Suppr超能文献

微生物燃料电池中氰化物降解过程中的共代谢动力学和产电变化。

Co-metabolism kinetics and electrogenesis change during cyanide degradation in a microbial fuel cell.

作者信息

Wu Hao, Feng Ya-Li, Li Hao-Ran, Wang Hong-Jun, Wang Jun-Jie

机构信息

School of Civil and Resource Engineering, University of Science and Technology Beijing Beijing China

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences Beijing China.

出版信息

RSC Adv. 2018 Dec 4;8(70):40407-40416. doi: 10.1039/c8ra08775j. eCollection 2018 Nov 28.

Abstract

The co-metabolic degradation kinetics, microbial growth kinetics and electricity generation capacity were researched of strain MC-1 in a MFC (microbial fuel cell). The results show that Haldane and Aiba models suit the growth kinetics of a single substrate (sodium acetate) MFC with 0.995 correlation coefficient. Moreover, the Haldane model was appropriate to describe the growth kinetics of a single substrate (sodium cyanide) MFC with 0.986 correlation coefficient. The growth kinetics of a mixed substrate MFC can be explained well by the SKIP model with correlation coefficient 0.995. Second order and three-half order models were found to suitably describe the cyanide degradation process. The maximum output voltage of MFC and the cyanide degradation efficiency were significantly enhanced by using sodium acetate and cyanide as mixed substrates. Also, the trend of electricity production is related to the growth cycle of microorganisms in a MFC.

摘要

研究了菌株MC-1在微生物燃料电池(MFC)中的共代谢降解动力学、微生物生长动力学和发电能力。结果表明,哈代模型和相场模型适用于单一底物(醋酸钠)MFC的生长动力学,相关系数为0.995。此外,哈代模型适用于描述单一底物(氰化钠)MFC的生长动力学,相关系数为0.986。SKIP模型能很好地解释混合底物MFC的生长动力学,相关系数为0.995。发现二阶和三分之二模型适用于描述氰化物降解过程。以醋酸钠和氰化物为混合底物,显著提高了MFC的最大输出电压和氰化物降解效率。此外,产电趋势与MFC中微生物的生长周期有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e2/9091495/50493147effb/c8ra08775j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验