Jain Mehak, Vaze Rutuja G, Ugrani Suraj C, Sharma Kamendra P
Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
RSC Adv. 2018 Nov 20;8(68):39029-39038. doi: 10.1039/c8ra08221a. eCollection 2018 Nov 16.
The development of multifunctional hybrid biomaterials is an important area of focus in tissue engineering, drug delivery, biocatalysis, and biosensing applications. Combining bioconjugation methodology with ice templating technique, we show here the development of a new class of multifunctional and biocatalytic scaffold-like spongy material fabricated from an aqueous solution of enzyme-polymer surfactant (enzyme-PS) core-shell conjugates, and polyethyleneimine (PEI) coated silica/silk nanoparticles. The generality of this process is demonstrated by the fabrication of biocatalytic sponges comprising PEI coated nanoparticles and core-shell conjugates of alkaline phosphatase (ALP-PS), or glucose oxidase (GOx-PS), and horseradish peroxidase (HRP-PS). We show that ALP-PS conjugate driven biocatalytic transformations can be simply achieved by saturating the highly porous, and manoeuvrable sponges with the -nitrophenyl phosphate substrate solution. Subsequently, the compressible and elastic property of the sponge can be utilized for the extrusion of the product, -nitrophenol, by applying controlled and normal mechanical stress. Further, the sponges can be washed and recycled upto ten times, with approximately 67% retention of initial biocatalytic activity. Interestingly, the ALP-PS conjugate based sponges exhibit mechanoresponsive catalytic behaviour; the amount of product obtained over 25 minutes of reaction time can be increased by approx. 8 times by compressing-decompressing the sponge after every 15 seconds. This is attributed to the change in mass transfer and diffusion of the substrate within the porous channels of the sponge. We also highlight the importance of bioconjugation of enzymes for fabricating such sponges; our results show that, whilst the native enzymes either denature or are leached away during the fabrication/biocatalytic usage, their enzyme-PS conjugate counterparts integrate efficiently to form sturdy, robust, highly catalytic, and recyclable sponge material.
多功能杂化生物材料的开发是组织工程、药物递送、生物催化和生物传感应用中的一个重要研究领域。通过将生物共轭方法与冰模板技术相结合,我们在此展示了一类新型多功能生物催化支架状海绵材料的开发,该材料由酶 - 聚合物表面活性剂(酶 - PS)核壳共轭物水溶液以及聚乙烯亚胺(PEI)包覆的二氧化硅/丝纳米颗粒制成。通过制备包含PEI包覆纳米颗粒以及碱性磷酸酶(ALP - PS)、葡萄糖氧化酶(GOx - PS)或辣根过氧化物酶(HRP - PS)的核壳共轭物的生物催化海绵,证明了该过程的通用性。我们表明,通过用对硝基苯磷酸底物溶液使高度多孔且可操纵的海绵饱和,可简单实现ALP - PS共轭物驱动的生物催化转化。随后,通过施加可控的常规机械应力,海绵的可压缩和弹性特性可用于挤出产物对硝基苯酚。此外,海绵可洗涤并循环使用多达十次,初始生物催化活性保留约67%。有趣的是,基于ALP - PS共轭物的海绵表现出机械响应催化行为;通过每15秒对海绵进行压缩 - 解压,在25分钟反应时间内获得的产物量可增加约8倍。这归因于底物在海绵多孔通道内的传质和扩散变化。我们还强调了酶的生物共轭对于制造此类海绵的重要性;我们的结果表明,虽然天然酶在制造/生物催化使用过程中会变性或被浸出,但它们的酶 - PS共轭物对应物能有效整合,形成坚固、耐用、高催化性且可回收的海绵材料。