Suppr超能文献

基于脑电图的想象语音解码技术综述

A State-of-the-Art Review of EEG-Based Imagined Speech Decoding.

作者信息

Lopez-Bernal Diego, Balderas David, Ponce Pedro, Molina Arturo

机构信息

Tecnologico de Monterrey, National Department of Research, Mexico City, Mexico.

出版信息

Front Hum Neurosci. 2022 Apr 26;16:867281. doi: 10.3389/fnhum.2022.867281. eCollection 2022.

Abstract

Currently, the most used method to measure brain activity under a non-invasive procedure is the electroencephalogram (EEG). This is because of its high temporal resolution, ease of use, and safety. These signals can be used under a Brain Computer Interface (BCI) framework, which can be implemented to provide a new communication channel to people that are unable to speak due to motor disabilities or other neurological diseases. Nevertheless, EEG-based BCI systems have presented challenges to be implemented in real life situations for imagined speech recognition due to the difficulty to interpret EEG signals because of their low signal-to-noise ratio (SNR). As consequence, in order to help the researcher make a wise decision when approaching this problem, we offer a review article that sums the main findings of the most relevant studies on this subject since 2009. This review focuses mainly on the pre-processing, feature extraction, and classification techniques used by several authors, as well as the target vocabulary. Furthermore, we propose ideas that may be useful for future work in order to achieve a practical application of EEG-based BCI systems toward imagined speech decoding.

摘要

目前,在非侵入性程序下测量大脑活动最常用的方法是脑电图(EEG)。这是因为它具有高时间分辨率、使用方便和安全性高的特点。这些信号可用于脑机接口(BCI)框架,该框架可用于为因运动障碍或其他神经疾病而无法说话的人提供一种新的交流渠道。然而,基于脑电图的BCI系统在现实生活中用于想象语音识别时面临着挑战,因为脑电图信号的信噪比(SNR)较低,难以解释。因此,为了帮助研究人员在处理这个问题时做出明智的决定,我们提供了一篇综述文章,总结了自2009年以来关于该主题的最相关研究的主要发现。这篇综述主要关注几位作者使用的预处理、特征提取和分类技术,以及目标词汇。此外,我们提出了一些可能对未来工作有用的想法,以便实现基于脑电图的BCI系统在想象语音解码方面的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9998/9086783/359173abe7e6/fnhum-16-867281-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验