Suppr超能文献

一种非凸[公式:见正文]正则化模型及基于交替方向乘子法的算法。

A nonconvex [Formula: see text] regularization model and the ADMM based algorithm.

作者信息

Fang Zhuang, Liming Tang, Liang Wu, Hanxin Liu

机构信息

School of Mathematics and Statistics, Hubei Minzu University, Enshi, 445000 People's Republic of China.

出版信息

Sci Rep. 2022 May 13;12(1):7942. doi: 10.1038/s41598-022-11938-7.

Abstract

The total variation (TV) regularization with [Formula: see text] fidelity is a popular method to restore the image contaminated by salt and pepper noise, but it often suffers from limited performance in edge-preserving. To solve this problem, we propose a nonconvex [Formula: see text] regularization model in this paper, which utilizes a nonconvex [Formula: see text]-norm [Formula: see text] defined in total variation (TV) domain (called [Formula: see text] regularizer) to regularize the restoration, and uses [Formula: see text] fidelity to measure the noise. Compared to the traditional TV model, the proposed model can more effectively preserve edges and contours since it provides a more sparse representation of the restoration in TV domain. An alternating direction method of multipliers (ADMM) combining with majorization-minimization (MM) scheme and proximity operator is introduced to numerically solve the proposed model. In particular, a sufficient condition for the convergence of the proposed algorithm is provided. Numerical results validate the proposed model and algorithm, which can effectively remove salt and pepper noise while preserving image edges and contours. In addition, compared with several state-of-the-art variational regularization models, the proposed model shows the best performance in terms of peak signal to noise ratio (PSNR) and mean structural similarity index (MSSIM). We can obtain about 0.5 dB PSNR and 0.06 MSSIM improvements against all compared models.

摘要

具有[公式:见原文]保真度的总变分(TV)正则化是恢复受椒盐噪声污染图像的一种常用方法,但它在边缘保留方面的性能往往有限。为了解决这个问题,我们在本文中提出了一种非凸[公式:见原文]正则化模型,该模型利用在总变分(TV)域中定义的非凸[公式:见原文]-范数[公式:见原文](称为[公式:见原文]正则化器)来正则化恢复过程,并使用[公式:见原文]保真度来衡量噪声。与传统的TV模型相比,所提出的模型能够更有效地保留边缘和轮廓,因为它在TV域中提供了恢复的更稀疏表示。引入了一种结合了逐次逼近最小化(MM)方案和邻近算子的交替方向乘子法(ADMM)来数值求解所提出的模型。特别地,给出了所提算法收敛的一个充分条件。数值结果验证了所提出的模型和算法,它们能够在保留图像边缘和轮廓的同时有效地去除椒盐噪声。此外,与几种最新的变分正则化模型相比,所提出的模型在峰值信噪比(PSNR)和平均结构相似性指数(MSSIM)方面表现出最佳性能。相对于所有比较模型,我们可以获得约0.5 dB的PSNR提升和0.06的MSSIM提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验