Suppr超能文献

用于 NFDM 信号的串行和并行卷积神经网络方案。

Serial and parallel convolutional neural network schemes for NFDM signals.

机构信息

Laser Physics and Photonic Devices Laboratories, STEM, University of South Australia, Adelaide, Australia.

Institute for Telecommunications Research, University of South Australia, Adelaide, Australia.

出版信息

Sci Rep. 2022 May 13;12(1):7962. doi: 10.1038/s41598-022-12141-4.

Abstract

Two conceptual convolutional neural network (CNN) schemes are proposed, developed and analysed for directly decoding nonlinear frequency division multiplexing (NFDM) signals with hardware implementation taken into consideration. A serial network scheme with a small network size is designed for small user applications, and a parallel network scheme with high speed is designed for places such as data centres. The work aimed at showing the potential of using CNN for practical NFDM-based fibre optic communication. In the numerical demonstrations, the serial network only occupies 0.5 MB of memory space while the parallel network occupies 128 MB of memory but allows parallel computing. Both network schemes were trained with simulated data and reached more than 99.9% accuracy.

摘要

提出并分析了两种概念上的卷积神经网络(CNN)方案,用于直接解码具有硬件实现考虑的非线性频分复用(NFDM)信号。设计了一个具有小网络规模的串行网络方案,用于小型用户应用,设计了一个具有高速的并行网络方案,用于数据中心等场所。这项工作旨在展示使用 CNN 进行实用的基于 NFDM 的光纤通信的潜力。在数值演示中,串行网络仅占用 0.5MB 的内存空间,而并行网络占用 128MB 的内存空间,但允许并行计算。这两个网络方案都是使用模拟数据进行训练的,准确率都超过了 99.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b7/9106738/6e40ff54010b/41598_2022_12141_Fig1_HTML.jpg

相似文献

1
Serial and parallel convolutional neural network schemes for NFDM signals.
Sci Rep. 2022 May 13;12(1):7962. doi: 10.1038/s41598-022-12141-4.
3
Memristor-based LSTM network with in situ training and its applications.
Neural Netw. 2020 Nov;131:300-311. doi: 10.1016/j.neunet.2020.07.035. Epub 2020 Aug 4.
4
A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
Sensors (Basel). 2023 Jan 11;23(2):824. doi: 10.3390/s23020824.
5
Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way.
Sensors (Basel). 2023 Jun 20;23(12):5749. doi: 10.3390/s23125749.
6
7
Nonlinear-frequency-packing nonlinear frequency division multiplexing transmission.
Opt Express. 2020 May 11;28(10):15360-15375. doi: 10.1364/OE.390293.
8
Deep learning for neural decoding in motor cortex.
J Neural Eng. 2022 Sep 23;19(5). doi: 10.1088/1741-2552/ac8fb5.

本文引用的文献

2
Activated Gradients for Deep Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2023 Apr;34(4):2156-2168. doi: 10.1109/TNNLS.2021.3106044. Epub 2023 Apr 4.
3
Direct decoding of nonlinear OFDM-QAM signals using convolutional neural network.
Opt Express. 2021 Apr 12;29(8):11591-11604. doi: 10.1364/OE.419609.
6
Squeeze-and-Excitation Networks.
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.
8
Nonlinear frequency division multiplexing with b-modulation: shifting the energy barrier.
Opt Express. 2018 Oct 15;26(21):27978-27990. doi: 10.1364/OE.26.027978.
9
Capacity estimates for optical transmission based on the nonlinear Fourier transform.
Nat Commun. 2016 Sep 9;7:12710. doi: 10.1038/ncomms12710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验