Suppr超能文献

用于增强光电化学水分解的钛网上的黑色3D-钛纳米管阵列

Black 3D-TiO Nanotube Arrays on Ti Meshes for Boosted Photoelectrochemical Water Splitting.

作者信息

Meng Ming, Feng Yamin, Li Chunyang, Gan Zhixing, Yuan Honglei, Zhang Honghui

机构信息

School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China.

Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.

出版信息

Nanomaterials (Basel). 2022 Apr 24;12(9):1447. doi: 10.3390/nano12091447.

Abstract

Black 3D-TiO nanotube arrays are successfully fabricated on the Ti meshes through a facile electrochemical reduction method. The optimized black 3D-TiO nanotubes arrays yield a maximal photocurrent density of 1.6 mA/cm at 0.22 V vs. Ag/AgCl with Faradic efficiency of 100%, which is about four times larger than that of the pristine 3D-TiO NTAs (0.4 mA/cm). Such boosted PEC water splitting activity primarily originates from the introduction of the oxygen vacancies, which results in the bandgap shrinkage of the 3D-TiO NTAs, boosting the utilization efficiency of visible light including the incident, reflected and/or refracted visible light captured by the 3D configuration. Moreover, the oxygen vacancies (Ti) can work as electron donors, which leads to the enhanced electronic conductivity and upward shift of the Fermi energy level, and thereby facilitating the transfer and separation of the photogenerated charge carrier at the semiconductor-electrolyte interface. This work offers a new opportunity to promote the PEC water splitting activity of TiO-based photoelectrodes.

摘要

通过一种简便的电化学还原方法,在钛网上成功制备出黑色三维二氧化钛纳米管阵列。优化后的黑色三维二氧化钛纳米管阵列在相对于银/氯化银电极0.22 V的电位下,产生的最大光电流密度为1.6 mA/cm²,法拉第效率为100%,这大约是原始三维二氧化钛纳米管阵列(0.4 mA/cm²)的四倍。这种增强的光电化学水分解活性主要源于氧空位的引入,这导致三维二氧化钛纳米管阵列的带隙缩小,提高了可见光的利用效率,包括由三维结构捕获的入射、反射和/或折射可见光。此外,氧空位(Ti)可作为电子供体,这导致电子导电性增强和费米能级上移,从而促进光生电荷载流子在半导体-电解质界面处的转移和分离。这项工作为提高基于二氧化钛的光电极的光电化学水分解活性提供了新的契机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f2/9104132/a60e6612f942/nanomaterials-12-01447-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验