Suppr超能文献

基于聚类的主动脉夹层筛查集成学习模型。

Cluster-Based Ensemble Learning Model for Aortic Dissection Screening.

机构信息

School of Automation, Central South University, Changsha 410083, China.

Xiangya School of Medicine, Central South University, Changsha 410083, China.

出版信息

Int J Environ Res Public Health. 2022 May 6;19(9):5657. doi: 10.3390/ijerph19095657.

Abstract

Aortic dissection (AD) is a rare and high-risk cardiovascular disease with high mortality. Due to its complex and changeable clinical manifestations, it is easily missed or misdiagnosed. In this paper, we proposed an ensemble learning model based on clustering: Cluster Random under-sampling Smote-Tomek Bagging (CRST-Bagging) to help clinicians screen for AD patients in the early phase to save their lives. In this model, we propose the CRST method, which combines the advantages of Kmeans++ and the Smote-Tomek sampling method, to overcome an extremely imbalanced AD dataset. Then we used the Bagging algorithm to predict the AD patients. We collected AD patients' and other cardiovascular patients' routine examination data from Xiangya Hospital to build the AD dataset. The effectiveness of the CRST method in resampling was verified by experiments on the original AD dataset. Our model was compared with RUSBoost and SMOTEBagging on the original dataset and a test dataset. The results show that our model performed better. On the test dataset, our model's precision and recall rates were 83.6% and 80.7%, respectively. Our model's F1-score was 82.1%, which is 4.8% and 1.6% higher than that of RUSBoost and SMOTEBagging, which demonstrates our model's effectiveness in AD screening.

摘要

主动脉夹层(AD)是一种罕见且高风险的心血管疾病,死亡率高。由于其临床表现复杂多变,容易被漏诊或误诊。在本文中,我们提出了一种基于聚类的集成学习模型:聚类随机欠采样 Smote-Tomek 装袋(CRST-Bagging),以帮助临床医生在早期阶段筛选 AD 患者,挽救他们的生命。在该模型中,我们提出了 CRST 方法,该方法结合了 Kmeans++和 Smote-Tomek 采样方法的优点,克服了 AD 数据集极度不平衡的问题。然后,我们使用 Bagging 算法对 AD 患者进行预测。我们从湘雅医院收集了 AD 患者和其他心血管患者的常规检查数据,构建了 AD 数据集。通过对原始 AD 数据集的实验,验证了 CRST 方法在重采样中的有效性。我们的模型与 RUSBoost 和 SMOTEBagging 在原始数据集和测试数据集上进行了比较。结果表明,我们的模型表现更好。在测试数据集上,我们的模型的准确率和召回率分别为 83.6%和 80.7%,F1 得分为 82.1%,分别比 RUSBoost 和 SMOTEBagging 高 4.8%和 1.6%,这表明我们的模型在 AD 筛查方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7759/9102711/2edc672a96ab/ijerph-19-05657-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验