Suppr超能文献

预测亨廷顿病的临床评分:一种轻量级言语测试。

Predicting clinical scores in Huntington's disease: a lightweight speech test.

机构信息

Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.

Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.

出版信息

J Neurol. 2022 Sep;269(9):5008-5021. doi: 10.1007/s00415-022-11148-1. Epub 2022 May 14.

Abstract

OBJECTIVES

Using brief samples of speech recordings, we aimed at predicting, through machine learning, the clinical performance in Huntington's Disease (HD), an inherited Neurodegenerative disease (NDD).

METHODS

We collected and analyzed 126 samples of audio recordings of both forward and backward counting from 103 Huntington's disease gene carriers [87 manifest and 16 premanifest; mean age 50.6 (SD 11.2), range (27-88) years] from three multicenter prospective studies in France and Belgium (MIG-HD (ClinicalTrials.gov NCT00190450); BIO-HD (ClinicalTrials.gov NCT00190450) and Repair-HD (ClinicalTrials.gov NCT00190450). We pre-registered all of our methods before running any analyses, in order to avoid inflated results. We automatically extracted 60 speech features from blindly annotated samples. We used machine learning models to combine multiple speech features in order to make predictions at individual levels of the clinical markers. We trained machine learning models on 86% of the samples, the remaining 14% constituted the independent test set. We combined speech features with demographics variables (age, sex, CAG repeats, and burden score) to predict cognitive, motor, and functional scores of the Unified Huntington's disease rating scale. We provided correlation between speech variables and striatal volumes.

RESULTS

Speech features combined with demographics allowed the prediction of the individual cognitive, motor, and functional scores with a relative error from 12.7 to 20.0% which is better than predictions using demographics and genetic information. Both mean and standard deviation of pause durations during backward recitation and clinical scores correlated with striatal atrophy (Spearman 0.6 and 0.5-0.6, respectively).

INTERPRETATION

Brief and examiner-free speech recording and analysis may become in the future an efficient method for remote evaluation of the individual condition in HD and likely in other NDD.

摘要

目的

通过机器学习,我们旨在使用简短的语音记录样本预测亨廷顿病(HD)的临床表现,亨廷顿病是一种遗传性神经退行性疾病(NDD)。

方法

我们从法国和比利时的三项多中心前瞻性研究(MIG-HD(ClinicalTrials.gov NCT00190450);BIO-HD(ClinicalTrials.gov NCT00190450)和 Repair-HD(ClinicalTrials.gov NCT00190450))中收集并分析了 103 名亨廷顿病基因携带者的 126 个正向和反向计数的音频记录样本,其中 87 名表现型,16 名前表现型;平均年龄 50.6(SD 11.2),年龄范围(27-88)岁。我们预先注册了所有方法,以避免结果膨胀。我们从盲法注释的样本中自动提取了 60 个语音特征。我们使用机器学习模型来组合多个语音特征,以便在临床标志物的个体水平上进行预测。我们在 86%的样本上训练机器学习模型,其余 14%构成独立测试集。我们将语音特征与人口统计学变量(年龄、性别、CAG 重复次数和负担评分)相结合,以预测统一亨廷顿病评定量表的认知、运动和功能评分。我们提供了语音变量与纹状体体积之间的相关性。

结果

语音特征与人口统计学信息相结合,能够以 12.7%至 20.0%的相对误差预测个体认知、运动和功能评分,这优于使用人口统计学和遗传信息的预测。反向复述时的停顿时长的平均值和标准差以及临床评分与纹状体萎缩相关(Spearman 0.6 和 0.5-0.6)。

结论

简短且无需检查者的语音记录和分析可能成为未来评估 HD 个体状况的有效方法,也可能适用于其他 NDD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b9/9363375/7207463d0a14/415_2022_11148_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验