Suppr超能文献

深度学习、强化学习和世界模型。

Deep learning, reinforcement learning, and world models.

作者信息

Matsuo Yutaka, LeCun Yann, Sahani Maneesh, Precup Doina, Silver David, Sugiyama Masashi, Uchibe Eiji, Morimoto Jun

机构信息

The University of Tokyo, Japan.

New York University, Courant Institute & Center for Data Science, United States of America; Facebook AI Research, United States of America.

出版信息

Neural Netw. 2022 Aug;152:267-275. doi: 10.1016/j.neunet.2022.03.037. Epub 2022 Apr 19.

Abstract

Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of indispensable factors to achieve human-level or super-human AI systems. On the other hand, both DL and RL have strong connections with our brain functions and with neuroscientific findings. In this review, we summarize talks and discussions in the "Deep Learning and Reinforcement Learning" session of the symposium, International Symposium on Artificial Intelligence and Brain Science. In this session, we discussed whether we can achieve comprehensive understanding of human intelligence based on the recent advances of deep learning and reinforcement learning algorithms. Speakers contributed to provide talks about their recent studies that can be key technologies to achieve human-level intelligence.

摘要

深度学习(DL)和强化学习(RL)方法似乎是实现人类水平或超人类人工智能系统不可或缺的因素。另一方面,DL和RL都与我们的大脑功能以及神经科学研究结果有着紧密的联系。在本综述中,我们总结了人工智能与脑科学国际研讨会“深度学习与强化学习”环节中的演讲和讨论。在这个环节中,我们探讨了基于深度学习和强化学习算法的最新进展,我们是否能够全面理解人类智能。演讲者们发表了关于他们近期研究的演讲,这些研究可能是实现人类水平智能的关键技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验