Suppr超能文献

使用贝叶斯网络分析确定从加利福尼亚州断奶奶牛小母牛身上采集的样本的最低抑菌浓度值之间的关联。

Identifying Associations in Minimum Inhibitory Concentration Values of Samples Obtained From Weaned Dairy Heifers in California Using Bayesian Network Analysis.

作者信息

Morgan Brittany L, Depenbrock Sarah, Martínez-López Beatriz

机构信息

Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States.

Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.

出版信息

Front Vet Sci. 2022 Apr 27;9:771841. doi: 10.3389/fvets.2022.771841. eCollection 2022.

Abstract

OBJECTIVE

Many antimicrobial resistance (AMR) studies in both human and veterinary medicine use traditional statistical methods that consider one bacteria and one antibiotic match at a time. A more robust analysis of AMR patterns in groups of animals is needed to improve on traditional methods examining antibiotic resistance profiles, the associations between the patterns of resistance or reduced susceptibility for all isolates in an investigation. The use of Bayesian network analysis can identify associations between distributions; this investigation seeks to add to the growing body of AMR pattern research by using Bayesian networks to identify relationships between susceptibility patterns in () isolates obtained from weaned dairy heifers in California.

METHODS

A retrospective data analysis was performed using data from rectal swab samples collected from 341 weaned dairy heifers on six farms in California and selectively cultured for . Antibiotic susceptibility tests for 281 isolates against 15 antibiotics were included. Bayesian networks were used to identify joint patterns of reduced susceptibility, defined as an increasing trend in the minimum inhibitory concentration (MIC) values. The analysis involved learning the network structure, identifying the best fitting graphical mode, and learning the parameters in the final model to quantify joint probabilities.

RESULTS

The graph identified that as susceptibility to one antibiotic decreases, so does susceptibility to other antibiotics in the same or similar class. The following antibiotics were connected in the final graphical model: ampicillin was connected to ceftiofur; spectinomycin was connected with trimethoprim-sulfamethoxazole, and this association was mediated by farm; florfenicol was connected with tetracycline.

CONCLUSIONS

Bayesian network analysis can elucidate complex relationships between MIC patterns. MIC values may be associated within and between drug classes, and some associations may be correlated with farm of sample origin. Treating MICs as discretized variables and testing for joint associations in trends may overcome common research problems surrounding the lack of clinical breakpoints.

摘要

目的

人类医学和兽医学中的许多抗菌药物耐药性(AMR)研究都使用传统统计方法,即一次只考虑一种细菌和一种抗生素的匹配情况。为改进传统的抗生素耐药性分析方法,需要对动物群体中的AMR模式进行更有力的分析,以研究调查中所有分离株的耐药性或敏感性降低模式之间的关联。贝叶斯网络分析的使用可以识别分布之间的关联;本研究旨在通过使用贝叶斯网络来识别从加利福尼亚州断奶奶牛小母牛中获得的()分离株的敏感性模式之间的关系,从而增加AMR模式研究的数量。

方法

使用从加利福尼亚州六个农场的341头断奶奶牛小母牛收集的直肠拭子样本数据进行回顾性数据分析,并对()进行选择性培养。纳入了281株分离株对15种抗生素的药敏试验。贝叶斯网络用于识别敏感性降低的联合模式,定义为最低抑菌浓度(MIC)值的增加趋势。分析包括学习网络结构、识别最佳拟合图形模式以及学习最终模型中的参数以量化联合概率。

结果

该图表明,对一种抗生素的敏感性降低时,对同一类或类似类别的其他抗生素的敏感性也会降低。在最终的图形模型中,以下抗生素相互关联:氨苄青霉素与头孢噻呋相关联;壮观霉素与甲氧苄啶 - 磺胺甲恶唑相关联,且这种关联由农场介导;氟苯尼考与四环素相关联。

结论

贝叶斯网络分析可以阐明MIC模式之间的复杂关系。MIC值可能在药物类别内部和之间存在关联,并且一些关联可能与样本来源的农场相关。将MIC视为离散变量并测试趋势中的联合关联可能会克服围绕缺乏临床断点的常见研究问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b180/9093072/130e50b0d4e6/fvets-09-771841-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验