Suppr超能文献

一种用于无人水面舰艇的目标检测与跟踪融合算法。

A Fusion Algorithm of Object Detection and Tracking for Unmanned Surface Vehicles.

作者信息

Zhou Zhiguo, Hu Xinxin, Li Zeming, Jing Zhao, Qu Chong

机构信息

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.

China State Shipbuilding Corporation Limited, Shanghai Marine Diesel Engine Research Institute, Shanghai, China.

出版信息

Front Neurorobot. 2022 Apr 27;16:808147. doi: 10.3389/fnbot.2022.808147. eCollection 2022.

Abstract

To provide reliable input for obstacle avoidance and decision-making, unmanned surface vehicles (USV) need to have the function of sensing the position of other USV targets in the process of cooperation and confrontation. Due to the small size of the target and the interference of the water and sky background, the current algorithms are prone to missed detection and drift problems when detecting and tracking USV. Therefore, in this paper, we propose a fusion algorithm of detection and tracking for USV targets. To solve the problem of vague features in the single-frame image, high-resolution and deep semantic information are obtained through a cross-stage partial network, and the anchor and convolution structure in the network has been improved given the characteristics of USV; besides, to meet the real-time requirements, the detected target is quickly tracked through correlation filtering, and the correlation characteristics of multi-frame images are obtained; then, the correlation characteristics are used to significantly reduce missed detection, and the tracking drift problems are corrected, combined with high-resolution semantic features of a single frame. Finally, the fusion algorithm is designed. In this paper, we constructed a picture dataset and a video dataset to test the effect of detection, tracking, and fusion algorithm separately, which proves the superiority of the fusion algorithm in this paper. The results show that, compared with a single detection algorithm and tracking algorithm, the fusion one can increase the success rate by more than 10%.

摘要

为了给避障和决策提供可靠输入,无人水面舰艇(USV)在协同与对抗过程中需要具备感知其他USV目标位置的功能。由于目标尺寸小以及水天背景的干扰,当前算法在检测和跟踪USV时容易出现漏检和漂移问题。因此,本文提出一种针对USV目标的检测与跟踪融合算法。为解决单帧图像中特征模糊的问题,通过跨阶段局部网络获取高分辨率和深度语义信息,并根据USV的特点对网络中的锚点和卷积结构进行了改进;此外,为满足实时性要求,通过相关滤波对检测到的目标进行快速跟踪,获取多帧图像的相关特征;然后,结合单帧的高分辨率语义特征,利用相关特征显著减少漏检并校正跟踪漂移问题。最后,设计了融合算法。本文构建了图片数据集和视频数据集,分别测试检测、跟踪及融合算法的效果,证明了本文融合算法的优越性。结果表明,与单一检测算法和跟踪算法相比,融合算法的成功率可提高10%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cff3/9097020/e9f58ec84f16/fnbot-16-808147-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验