Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
Genet Epidemiol. 2022 Oct;46(7):395-414. doi: 10.1002/gepi.22460. Epub 2022 May 18.
Risk evaluation to identify individuals who are at greater risk of cancer as a result of heritable pathogenic variants is a valuable component of individualized clinical management. Using principles of Mendelian genetics, Bayesian probability theory, and variant-specific knowledge, Mendelian models derive the probability of carrying a pathogenic variant and developing cancer in the future, based on family history. Existing Mendelian models are widely employed, but are generally limited to specific genes and syndromes. However, the upsurge of multigene panel germline testing has spurred the discovery of many new gene-cancer associations that are not presently accounted for in these models. We have developed PanelPRO, a flexible, efficient Mendelian risk prediction framework that can incorporate an arbitrary number of genes and cancers, overcoming the computational challenges that arise because of the increased model complexity. We implement an 11-gene, 11-cancer model, the largest Mendelian model created thus far, based on this framework. Using simulations and a clinical cohort with germline panel testing data, we evaluate model performance, validate the reverse-compatibility of our approach with existing Mendelian models, and illustrate its usage. Our implementation is freely available for research use in the PanelPRO R package.
风险评估旨在识别由于遗传致病性变异而导致癌症风险增加的个体,这是个性化临床管理的重要组成部分。基于孟德尔遗传学原理、贝叶斯概率论和特定变异的知识,孟德尔模型根据家族史推断携带致病性变异并在未来发生癌症的概率。现有的孟德尔模型被广泛应用,但通常仅限于特定的基因和综合征。然而,多基因panel 种系检测的兴起促使发现了许多新的基因-癌症关联,这些关联目前尚未在这些模型中得到体现。我们开发了 PanelPRO,这是一种灵活、高效的孟德尔风险预测框架,可以纳入任意数量的基因和癌症,克服了由于模型复杂性增加而产生的计算挑战。我们基于这个框架实现了一个 11 个基因、11 种癌症的模型,这是迄今为止创建的最大的孟德尔模型。我们使用模拟和具有种系 panel 检测数据的临床队列来评估模型性能,验证我们的方法与现有孟德尔模型的反向兼容性,并说明其用法。我们的实现可在 PanelPRO R 包中免费供研究使用。