Suppr超能文献

罕见表达异常相关变异的整合提高了多基因风险预测。

Integration of rare expression outlier-associated variants improves polygenic risk prediction.

机构信息

Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA; Genomic Medicine Center, Children's Mercy Research Institute and Children's Mercy Kansas City, Kansas City, MO, USA.

Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Am J Hum Genet. 2022 Jun 2;109(6):1055-1064. doi: 10.1016/j.ajhg.2022.04.015. Epub 2022 May 18.

Abstract

Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual's likelihood of a complex trait or disease. However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body mass index (BMI), obesity, and bariatric surgery. Between the top and bottom 10%, we observed a 20.8% increase in risk for obesity (p = 3 × 10), 62.3% increase in risk for severe obesity (p = 1 × 10), and median 5.29 years earlier onset for bariatric surgery (p = 0.008), as a function of expression outlier-associated rare variant burden when controlling for common variant PRS. We show that these predictions were more significant than integrating the effects of rare protein-truncating variants (PTVs), observing a mean 19% increase in phenotypic variance explained with expression outlier-associated rare variants when compared with PTVs (p = 2 × 10). We replicated these findings by using data from the Million Veteran Program and demonstrated that PRSs across multiple traits and diseases can benefit from the inclusion of expression outlier-associated rare variants identified through population-scale transcriptome sequencing.

摘要

多基因风险评分 (PRS) 量化了多个遗传位点对个体复杂特征或疾病易感性的贡献。然而,现有的 PRS 仅使用常见遗传变异来估计这种可能性,而忽略了罕见变异的影响。在这里,我们报告了一种方法,可以识别与基因表达异常相关的罕见变异,并将其影响整合到体重指数 (BMI)、肥胖和减肥手术的 PRS 预测中。在最高和最低的 10%之间,我们观察到肥胖风险增加了 20.8%(p = 3×10),严重肥胖风险增加了 62.3%(p = 1×10),减肥手术的发病中位时间提前了 5.29 年(p = 0.008),这是作为控制常见变异 PRS 后表达异常相关罕见变异负担的函数。我们表明,这些预测比整合罕见蛋白截断变异 (PTV) 的影响更为显著,与 PTV 相比,观察到与表达异常相关的罕见变异解释表型方差的平均增加了 19%(p = 2×10)。我们通过使用百万退伍军人计划的数据复制了这些发现,并表明通过对人群规模的转录组测序识别与表达异常相关的罕见变异,可以使多种特征和疾病的 PRS 受益。

相似文献

引用本文的文献

3
Aberrant gene expression prediction across human tissues.跨人类组织的异常基因表达预测
Nat Commun. 2025 Mar 29;16(1):3061. doi: 10.1038/s41467-025-58210-w.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验