Suppr超能文献

基于 LC-MS/MS 技术的氨基酸和酰基肉碱靶向代谢组学分析及其在糖尿病风险标志物中的研究。

Targeted metabolomics analysis of amino acids and acylcarnitines as risk markers for diabetes by LC-MS/MS technique.

机构信息

Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2022 May 19;12(1):8418. doi: 10.1038/s41598-022-11970-7.

Abstract

Diabetes is a common chronic disease affecting millions of people worldwide. It underlies various complications and imposes many costs on individuals and society. Discovering early diagnostic biomarkers takes excellent insight into preventive plans and the best use of interventions. Therefore, in the present study, we aimed to evaluate the association between the level of amino acids and acylcarnitines and diabetes to develop diabetes predictive models. Using the targeted LC-MS/MS technique, we analyzed fasting plasma samples of 206 cases and 206 controls that were matched by age, sex, and BMI. The association between metabolites and diabetes was evaluated using univariate and multivariate regression analysis with adjustment for systolic and diastolic blood pressure and lipid profile. To deal with multiple comparisons, factor analysis was used. Participants' average age and BMI were 61.6 years, 28.9 kg/m, and 55% were female. After adjustment, Factor 3 (tyrosine, valine, leucine, methionine, tryptophan, phenylalanine), 5 (C3DC, C5, C5OH, C5:1), 6 (C14OH, C16OH, C18OH, C18:1OH), 8 (C2, C4OH, C8:1), 10 (alanine, proline) and 11 (glutamic acid, C18:2OH) were positively associated with diabetes. Inline, factor 9 (C4DC, serine, glycine, threonine) and 12 (citrulline, ornithine) showed a reverse trend. Some amino acids and acylcarnitines were found as potential risk markers for diabetes incidents that reflected the disturbances in the several metabolic pathways among the diabetic population and could be targeted to prevent, diagnose, and treat diabetes.

摘要

糖尿病是一种常见的慢性疾病,影响着全球数百万人。它会导致各种并发症,并给个人和社会带来许多负担。发现早期诊断生物标志物可以深入了解预防计划和最佳干预措施的使用。因此,在本研究中,我们旨在评估氨基酸和酰基辅酶 A 水平与糖尿病之间的关系,以开发糖尿病预测模型。使用靶向 LC-MS/MS 技术,我们分析了 206 例病例和 206 例匹配年龄、性别和 BMI 的对照者的空腹血浆样本。使用单变量和多变量回归分析评估代谢物与糖尿病之间的关系,并调整收缩压和舒张压以及血脂谱。为了处理多重比较,使用因子分析。参与者的平均年龄和 BMI 分别为 61.6 岁、28.9kg/m2,55%为女性。调整后,因子 3(酪氨酸、缬氨酸、亮氨酸、蛋氨酸、色氨酸、苯丙氨酸)、5(C3DC、C5、C5OH、C5:1)、6(C14OH、C16OH、C18OH、C18:1OH)、8(C2、C4OH、C8:1)、10(丙氨酸、脯氨酸)和 11(谷氨酸、C18:2OH)与糖尿病呈正相关。相反,因子 9(C4DC、丝氨酸、甘氨酸、苏氨酸)和 12(瓜氨酸、精氨酸)呈反向趋势。一些氨基酸和酰基辅酶 A 被发现是糖尿病事件的潜在风险标志物,反映了糖尿病患者中几种代谢途径的紊乱,可用于预防、诊断和治疗糖尿病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f930/9119932/05ea8f89bd15/41598_2022_11970_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验