Zunino Luciano, Olivares Felipe, Ribeiro Haroldo V, Rosso Osvaldo A
Centro de Investigaciones Ópticas (CONICET La Plata-CIC-UNLP), 1897 Gonnet, La Plata, Argentina.
Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina.
Phys Rev E. 2022 Apr;105(4-2):045310. doi: 10.1103/PhysRevE.105.045310.
The main motivation of this paper is to introduce the permutation Jensen-Shannon distance, a symbolic tool able to quantify the degree of similarity between two arbitrary time series. This quantifier results from the fusion of two concepts, the Jensen-Shannon divergence and the encoding scheme based on the sequential ordering of the elements in the data series. The versatility and robustness of this ordinal symbolic distance for characterizing and discriminating different dynamics are illustrated through several numerical and experimental applications. Results obtained allow us to be optimistic about its usefulness in the field of complex time-series analysis. Moreover, thanks to its simplicity, low computational cost, wide applicability, and less susceptibility to outliers and artifacts, this ordinal measure can efficiently handle large amounts of data and help to tackle the current big data challenges.
本文的主要目的是引入排列詹森 - 香农距离,这是一种能够量化两个任意时间序列之间相似程度的符号工具。这个量化指标是由两个概念融合而成的,即詹森 - 香农散度和基于数据序列中元素顺序排列的编码方案。通过几个数值和实验应用,展示了这种有序符号距离在表征和区分不同动态方面的通用性和稳健性。所获得的结果让我们对其在复杂时间序列分析领域的实用性持乐观态度。此外,由于其简单性、低计算成本、广泛的适用性以及对异常值和伪影的低敏感性,这种有序度量能够有效地处理大量数据,并有助于应对当前的大数据挑战。