Suppr超能文献

一种使用带噪标签正则化的深度学习框架来分类乳腺密度。

A deep learning framework to classify breast density with noisy labels regularization.

机构信息

Instituto Tecnológico de la Informática, Universitat Politècnica de València,Camino de Vera, s/n, 46022 València, Spain.

National Center for Epidemiology, Carlos III Institute of Health, Monforte de lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Carlos III Institute of Health, Monforte de Lemos 5, 28029 Madrid, Spain.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106885. doi: 10.1016/j.cmpb.2022.106885. Epub 2022 May 12.

Abstract

BACKGROUND AND OBJECTIVE

Breast density assessed from digital mammograms is a biomarker for higher risk of developing breast cancer. Experienced radiologists assess breast density using the Breast Image and Data System (BI-RADS) categories. Supervised learning algorithms have been developed with this objective in mind, however, the performance of these algorithms depends on the quality of the ground-truth information which is usually labeled by expert readers. These labels are noisy approximations of the ground truth, as there is often intra- and inter-reader variability among labels. Thus, it is crucial to provide a reliable method to obtain digital mammograms matching BI-RADS categories. This paper presents RegL (Labels Regularizer), a methodology that includes different image pre-processes to allow both a correct breast segmentation and the enhancement of image quality through an intensity adjustment, thus allowing the use of deep learning to classify the mammograms into BI-RADS categories. The Confusion Matrix (CM) - CNN network used implements an architecture that models each radiologist's noisy label. The final methodology pipeline was determined after comparing the performance of image pre-processes combined with different DL architectures.

METHODS

A multi-center study composed of 1395 women whose mammograms were classified into the four BI-RADS categories by three experienced radiologists is presented. A total of 892 mammograms were used as the training corpus, 224 formed the validation corpus, and 279 the test corpus.

RESULTS

The combination of five networks implementing the RegL methodology achieved the best results among all the models in the test set. The ensemble model obtained an accuracy of (0.85) and a kappa index of 0.71.

CONCLUSIONS

The proposed methodology has a similar performance to the experienced radiologists in the classification of digital mammograms into BI-RADS categories. This suggests that the pre-processing steps and modelling of each radiologist's label allows for a better estimation of the unknown ground truth labels.

摘要

背景与目的

从数字乳房 X 光片中评估的乳房密度是乳腺癌风险较高的生物标志物。经验丰富的放射科医生使用乳房影像报告和数据系统 (BI-RADS) 类别来评估乳房密度。已经开发了具有这种目标的监督学习算法,但是这些算法的性能取决于地面真实信息的质量,而地面真实信息通常是由专家读者标记的。这些标签是地面真实的嘈杂近似值,因为标签之间通常存在读者内和读者间的变异性。因此,提供一种可靠的方法来获取与 BI-RADS 类别匹配的数字乳房 X 光片至关重要。本文提出了 RegL(标签正则化器),这是一种方法,包括不同的图像预处理步骤,以允许正确的乳房分割,并通过强度调整来增强图像质量,从而允许使用深度学习对乳房 X 光片进行分类到 BI-RADS 类别。所使用的混淆矩阵 (CM)-CNN 网络实现了一种架构,该架构为每个放射科医生的嘈杂标签建模。在比较了不同的深度学习架构与不同的图像预处理相结合的性能之后,确定了最终的方法学流程。

方法

提出了一项由 1395 名女性组成的多中心研究,这些女性的乳房 X 光片由三位经验丰富的放射科医生分类为四个 BI-RADS 类别。总共使用了 892 张乳房 X 光片作为训练语料库,224 张作为验证语料库,279 张作为测试语料库。

结果

在测试集中,实现 RegL 方法的五个网络的组合在所有模型中取得了最佳结果。集成模型的准确率为(0.85),kappa 指数为 0.71。

结论

所提出的方法在将数字乳房 X 光片分类为 BI-RADS 类别方面与经验丰富的放射科医生具有相似的性能。这表明,每个放射科医生的标签的预处理步骤和建模允许对未知的地面真实标签进行更好的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验