Suppr超能文献

一种基于脑电图信号预测消费者未来选择的智能神经营销系统。

An intelligent neuromarketing system for predicting consumers' future choice from electroencephalography signals.

机构信息

Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Institute for Advanced Research (IAR), United International University, Dhaka, Bangladesh.

School of Business and Economics, United International University, Dhaka, Bangladesh.

出版信息

Physiol Behav. 2022 Sep 1;253:113847. doi: 10.1016/j.physbeh.2022.113847. Epub 2022 May 17.

Abstract

Neuromarketing utilizes Brain-Computer Interface (BCI) technologies to provide insight into consumers responses on marketing stimuli. In order to achieve insight information, marketers spend about $400 billion annually on marketing, promotion, and advertisement using traditional marketing research tools. In addition, these tools like personal depth interviews, surveys, focus group discussions, etc. are expensive and frequently criticized for failing to extract actual consumer preferences. Neuromarketing, on the other hand, promises to overcome such constraints. In this work, an EEG-based neuromarketing framework is employed for predicting consumer future choice (affective attitude) while they view E-commerce products. After preprocessing, three types of features, namely, time, frequency, and time-frequency domain features are extracted. Then, wrapper-based Support Vector Machine-Recursive Feature Elimination (SVM-RFE) along with correlation bias reduction is used for feature selection. Lastly, we use SVM for categorizing positive affective attitude and negative affective attitude. Experiments show that the frontal cortex achieves the best accuracy of 98.67±2.98, 98±3.22, and 98.67±3.52 for 5-fold, 10-fold, and leave-one-subject-out (LOSO) respectively. In addition, among all the channels, F achieves best accuracy 90±7.81, 90.67±9.53, and 92.67±7.03 for 5-fold, 10-fold, and LOSO respectively. Subsequently, this work opens the door for implementing such a neuromarketing framework using consumer-grade devices in a real-life setting for marketers. As a result, it is evident that EEG-based neuromarketing technologies can assist brands and enterprises in forecasting future consumer preferences accurately. Hence, it will pave the way for the creation of an intelligent marketing assistive system for neuromarketing applications in future.

摘要

神经营销利用脑机接口 (BCI) 技术来提供对消费者对营销刺激的反应的深入了解。为了获得洞察信息,营销人员每年在营销、推广和广告上花费约 4000 亿美元,使用传统的营销研究工具。此外,这些工具,如个人深度访谈、调查、焦点小组讨论等,既昂贵又经常因未能提取实际消费者偏好而受到批评。另一方面,神经营销承诺克服这些限制。在这项工作中,采用基于脑电图的神经营销框架来预测消费者在观看电子商务产品时的未来选择(情感态度)。在预处理之后,提取了三种类型的特征,即时间、频率和时频域特征。然后,使用基于包装的支持向量机-递归特征消除 (SVM-RFE) 以及相关偏置减少进行特征选择。最后,我们使用 SVM 对积极情感态度和消极情感态度进行分类。实验表明,额叶达到了最佳的准确率 98.67±2.98、98±3.22 和 98.67±3.52,分别对应 5 倍、10 倍和离开一个受试者(LOSO)。此外,在所有通道中,F 通道的准确率最高,分别为 90±7.81、90.67±9.53 和 92.67±7.03,对应 5 倍、10 倍和 LOSO。随后,这项工作为在现实环境中使用消费者级设备实现这样的神经营销框架打开了大门,为营销人员提供了便利。因此,很明显,基于脑电图的神经营销技术可以帮助品牌和企业准确预测未来消费者的偏好。因此,它将为未来神经营销应用的智能营销辅助系统的创建铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验