Suppr超能文献

机场运输车辆中空气传播风险下通风、空气混合与乘客密度之间的权衡。

Tradeoffs between ventilation, air mixing, and passenger density for the airborne transmission risk in airport transportation vehicles.

作者信息

Zhu Shengwei, Lin Tong, Laurent Jose Guillermo Cedeno, Spengler John D, Srebric Jelena

机构信息

Dept. of Mechanical Engineering, University of Maryland, College Park, MD, USA.

Dept. of Environmental Health, Harvard School of Public Health, Boston, MA, USA.

出版信息

Build Environ. 2022 Jul 1;219:109186. doi: 10.1016/j.buildenv.2022.109186. Epub 2022 May 17.

Abstract

Airport transportation vehicles, such as buses, aerotrains, and shuttles, provide important passenger transfer services in airports. This study quantitatively investigated COVID-19 aerosol infection risk and identified acceptable operational conditions, such as passenger occupancy rates and duration of rides, given the performance of vehicle ventilation. The greatest risk to the largest number of passengers is from an index case whose exhaled breath would take the longest time to exit the vehicle. The study identified such a case based on ventilation patterns, and it tracked the spread of viral aerosols (5 μm) by using the Wells-Riley equation to predict aerosol infection risk distribution. These distributions allowed a definition of an imperfect mixing degree () as the ratio of actual risk and the calculated risk under a perfect mixing condition, and further derived regression equations to predict in the far-field (FF) and near-field (NF) of each passenger. These results revealed an order of magnitude higher aerosol infection risk in NF than in FF. For example, with a ventilation rate of 58 ACH (air changes per hour) and a 45% occupancy rate, unmasked passengers should stay up to 15 min in the bus and 35 min in the shuttle to limit infection risk in NF within 10%. These also indicate that masking is an important and effective risk reduction measure in transportation vehicles, especially important in NF. Overall, the analysis of imperfect air mixing allows direct comparison of risks in different transportation vehicles and a structured approach to development of policy recommendations.

摘要

机场运输车辆,如公交车、机场列车和穿梭巴士,在机场提供重要的乘客转运服务。本研究定量调查了新冠病毒气溶胶感染风险,并根据车辆通风性能确定了可接受的运营条件,如乘客占有率和乘车时长。对大多数乘客来说,最大风险来自于一名指数病例,其呼出的气息需要最长时间才能排出车辆。该研究根据通风模式确定了这样一个案例,并通过使用威尔斯-莱利方程来预测气溶胶感染风险分布,追踪了病毒气溶胶(5微米)的传播。这些分布使得可以将不完全混合度()定义为实际风险与完全混合条件下计算出的风险之比,并进一步推导回归方程以预测每个乘客远场(FF)和近场(NF)中的。这些结果表明,近场中的气溶胶感染风险比远场高一个数量级。例如,在通风率为每小时58次换气(ACH)且占有率为45%的情况下,未戴口罩的乘客在公交车上应停留不超过15分钟,在穿梭巴士上应停留不超过35分钟,以将近场中的感染风险限制在10%以内。这些还表明,戴口罩是运输车辆中一项重要且有效的风险降低措施,在近场中尤为重要。总体而言,对不完全空气混合的分析允许直接比较不同运输车辆中的风险,并为制定政策建议提供结构化方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验