Suppr超能文献

采用耦合 CFD-DEM 模型来预测 EPS 如何在流动条件下影响细菌生物膜的变形、恢复和脱落。

Coupled CFD-DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions.

机构信息

School of Engineering, Newcastle University, Newcastle upon Tyne, UK.

Department of Oncology, University of Oxford, Oxford, UK.

出版信息

Biotechnol Bioeng. 2022 Sep;119(9):2551-2563. doi: 10.1002/bit.28146. Epub 2022 Jun 2.

Abstract

The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic- discrete element method (CFD-DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional groups of microorganisms in the biofilm, enables the study of the contribution of EPS toward biofilm resistance to fluid shear stress. Furthermore, the stress-strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm. Our predicted emergent viscoelastic properties of biofilms were consistent with relevant experimental measurements.

摘要

细菌生物膜的变形和脱落与生物膜本身的结构和力学性能有关。胞外聚合物(EPS)在保持生物膜的力学稳定性方面起着重要作用。对生物膜力学和脱落的理解有助于揭示生物膜在流体剪切下的生存机制,并深入了解在清洗周期中需要什么样的流动来去除生物膜,或者船舶需要什么样的流动来去除生物膜。然而,EPS 如何影响流动条件下生物膜的力学及其变形仍然难以捉摸。为了解决这个问题,开发了一种耦合计算流体动力学-离散元法(CFD-DEM)模型。通过在不同速度和加载速率下施加流体流动的水动力,揭示了生物膜脱落的机制,如侵蚀和剥落。该模型还允许调整生物膜中不同功能微生物群体的比例,从而可以研究 EPS 对生物膜抵抗流体剪切应力的贡献。此外,通过加载和卸载流体剪切应力来捕获生物膜变形过程中的应力-应变曲线,以研究生物膜的粘弹性。我们预测的生物膜的新兴粘弹性与相关的实验测量结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909f/9544383/56673a380354/BIT-119-2551-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验