Suppr超能文献

基于选定频段和脑电图导联的癫痫发作分类:一种自然语言处理方法。

Seizure classification with selected frequency bands and EEG montages: a Natural Language Processing approach.

作者信息

Wang Ziwei, Mengoni Paolo

机构信息

Institute of Interdisciplinary Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.

Department of Journalism, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.

出版信息

Brain Inform. 2022 May 27;9(1):11. doi: 10.1186/s40708-022-00159-3.

Abstract

Individualized treatment is crucial for epileptic patients with different types of seizures. The differences among patients impact the drug choice as well as the surgery procedure. With the advance in machine learning, automatic seizure detection can ease the manual time-consuming and labor-intensive procedure for diagnose seizure in the clinical setting. In this paper, we present an electroencephalography (EEG) frequency bands (sub-bands) and montages selection (sub-zones) method for classifier training that exploits Natural Language Processing from individual patients' clinical report. The proposed approach is targeting for individualized treatment. We integrated the prior knowledge from patient's reports into the classifier-building process, mimicking the authentic thinking process of experienced neurologist's when diagnosing seizure using EEG. The keywords from clinical documents are mapped to the EEG data in terms of frequency bands and scalp EEG electrodes. The data of experiments are from the Temple University Hospital EEG seizure corpus, and the dataset is divided based on each group of patients with same seizure type and same recording electrode references. The classifier includes Random Forest, Support Vector Machine and Multi-Layer Perceptron. The classification performance indicates that competitive results can be achieve with a small portion of EEG the data. Using the sub-zones selection for Generalized Seizures (GNSZ) on all three electrodes, data are reduced by nearly 50% while the performance metrics remain at the same level with the whole frequency and zones. Moreover, when selecting by sub-zones and sub-bands together for GNSZ with Linked Ears reference, the data range reduced to 0.3% of whole range, and the performance deviates less than 3% from the results with whole range of data. Results show that using proposed approach may lead to more efficient implementations of the seizure classifier to be executed on power-efficient devices for long lasting real-time seizures detection.

摘要

个性化治疗对于患有不同类型癫痫发作的患者至关重要。患者之间的差异会影响药物选择以及手术程序。随着机器学习的发展,自动癫痫发作检测可以减轻临床环境中手动诊断癫痫发作的耗时且费力的过程。在本文中,我们提出了一种用于分类器训练的脑电图(EEG)频段(子频段)和导联选择(子区域)方法,该方法利用个体患者临床报告中的自然语言处理。所提出的方法旨在实现个性化治疗。我们将患者报告中的先验知识整合到分类器构建过程中,模仿经验丰富的神经科医生使用脑电图诊断癫痫发作时的真实思维过程。临床文档中的关键词根据频段和头皮脑电图电极映射到脑电图数据。实验数据来自天普大学医院脑电图癫痫语料库,并且数据集是根据每组具有相同癫痫发作类型和相同记录电极参考的患者进行划分的。分类器包括随机森林、支持向量机和多层感知器。分类性能表明,使用一小部分脑电图数据就能取得有竞争力的结果。在所有三个电极上对全身性癫痫发作(GNSZ)使用子区域选择,数据减少了近50%,而性能指标与全频段和全区域时保持在同一水平。此外,当对具有双耳参考的GNSZ同时按子区域和子频段进行选择时,数据范围缩小到整个范围的0.3%,并且性能与使用全范围数据的结果偏差小于3%。结果表明,使用所提出的方法可能会使癫痫发作分类器在节能设备上更高效地执行,以进行持久的实时癫痫发作检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f7/9142724/d856f97334bb/40708_2022_159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验