Suppr超能文献

iMIL4PATH:一种用于结直肠癌全切片图像的半监督可解释方法。

iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images.

作者信息

Neto Pedro C, Oliveira Sara P, Montezuma Diana, Fraga João, Monteiro Ana, Ribeiro Liliana, Gonçalves Sofia, Pinto Isabel M, Cardoso Jaime S

机构信息

Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal.

Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal.

出版信息

Cancers (Basel). 2022 May 18;14(10):2489. doi: 10.3390/cancers14102489.

Abstract

Colorectal cancer (CRC) diagnosis is based on samples obtained from biopsies, assessed in pathology laboratories. Due to population growth and ageing, as well as better screening programs, the CRC incidence rate has been increasing, leading to a higher workload for pathologists. In this sense, the application of AI for automatic CRC diagnosis, particularly on whole-slide images (WSI), is of utmost relevance, in order to assist professionals in case triage and case review. In this work, we propose an interpretable semi-supervised approach to detect lesions in colorectal biopsies with high sensitivity, based on multiple-instance learning and feature aggregation methods. The model was developed on an extended version of the recent, publicly available CRC dataset (the CRC+ dataset with 4433 WSI), using 3424 slides for training and 1009 slides for evaluation. The proposed method attained 90.19% classification ACC, 98.8% sensitivity, 85.7% specificity, and a quadratic weighted kappa of 0.888 at slide-based evaluation. Its generalisation capabilities are also studied on two publicly available external datasets.

摘要

结直肠癌(CRC)的诊断基于病理实验室评估的活检样本。由于人口增长和老龄化,以及更好的筛查计划,CRC的发病率一直在上升,导致病理学家的工作量增加。从这个意义上说,应用人工智能进行CRC自动诊断,特别是对全切片图像(WSI)进行诊断,对于协助专业人员进行病例分类和病例复查至关重要。在这项工作中,我们提出了一种可解释的半监督方法,基于多实例学习和特征聚合方法,以高灵敏度检测结直肠活检中的病变。该模型是在最近公开可用的CRC数据集(包含4433张WSI的CRC+数据集)的扩展版本上开发的,使用3424张幻灯片进行训练,1009张幻灯片进行评估。在基于幻灯片的评估中,所提出的方法获得了90.19%的分类准确率、98.8%的灵敏度、85.7%的特异性以及0.888的二次加权kappa值。还在两个公开可用的外部数据集上研究了其泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d27/9139905/a77f18eeb71c/cancers-14-02489-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验