Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Korea.
Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea.
Int J Mol Sci. 2022 May 12;23(10):5428. doi: 10.3390/ijms23105428.
Digital-light-processing (DLP) three-dimensional (3D) bioprinting, which has a rapid printing speed and high precision, requires optimized biomaterial ink to ensure photocrosslinking for successful printing. However, optimization studies on DLP bioprinting have yet to sufficiently explore the measurement of light exposure energy and biomaterial ink absorbance controls to improve the printability. In this study, we synchronized the light wavelength of the projection base printer with the absorption wavelength of the biomaterial ink. In this paper, we provide a stepwise explanation of the challenges associated with unsynchronized absorption wavelengths and provide appropriate examples. In addition to biomaterial ink wavelength synchronization, we introduce photorheological measurements, which can provide optimized light exposure conditions. The photorheological measurements provide precise numerical data on light exposure time and, therefore, are an effective alternative to the expendable and inaccurate conventional measurement methods for light exposure energy. Using both photorheological measurements and bioink wavelength synchronization, we identified essential printability optimization conditions for DLP bioprinting that can be applied to various fields of biological sciences.
数字光处理(DLP)三维(3D)生物打印具有快速打印速度和高精度的特点,需要优化的生物材料墨水来确保光交联以实现成功打印。然而,DLP 生物打印的优化研究尚未充分探索光曝光能量的测量和生物材料墨水吸收率控制,以提高打印性能。在本研究中,我们将投影仪的基础光波长与生物材料墨水的吸收波长同步。本文提供了与吸收波长不同步相关挑战的分步解释,并提供了适当的示例。除了生物材料墨水波长同步,我们还引入了光流变测量,可以提供优化的光暴露条件。光流变测量提供了关于光暴露时间的精确数值数据,因此是一种替代耗时且不准确的传统光暴露能量测量方法的有效方法。通过使用光流变测量和生物墨水波长同步,我们确定了 DLP 生物打印的必要打印性能优化条件,这些条件可应用于生物科学的各个领域。