Suppr超能文献

基于人工智能算法分析多核苷酸治疗膝骨关节炎患者功能和解剖学改善效果的研究:一项前瞻性病例系列研究

Study of the Efficacy of Artificial Intelligence Algorithm-Based Analysis of the Functional and Anatomical Improvement in Polynucleotide Treatment in Knee Osteoarthritis Patients: A Prospective Case Series.

作者信息

Jang Ji Yoon, Kim Ji Hyun, Kim Min Woo, Kim Sung Hoon, Yong Sang Yeol

机构信息

Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.

Yonsei Institute of Sports Science and Exercise Medicine, Wonju 26426, Korea.

出版信息

J Clin Med. 2022 May 18;11(10):2845. doi: 10.3390/jcm11102845.

Abstract

Knee osteoarthritis (OA) is one of the most common degenerative diseases in old age. Recent studies have suggested new treatment approaches dealing with subchondral remodeling, which is a typical feature of OA progression. However, diagnostic tools or therapeutic approaches related to such a process are still being researched. The automated artificial intelligence (AI) algorithm-based texture analysis is a new method used for OA-progression detection. We designed a prospective case series study to examine the efficacy of the AI algorithm-based texture analysis in detecting the restoration of the subchondral remodeling process, which is expected to follow therapeutic intervention. In this study, we used polynucleotide (PN) filler injections as the therapeutic modality and the treatment outcome was verified by symptom improvement, as well as by the induction of subchondral microstructural changes. We used AI algorithm-based texture analysis to observe these changes in the subchondral bone with the bone structure value (BSV). A total of 51 participants diagnosed with knee OA were enrolled in this study. Intra-articular PN filler (HP cell Vitaran J) injections were administered once a week and five times in total. Knee X-rays and texture analyses with BSVs were performed during the screening visit and the last visit three months after screening. The Visual Analogue Scale (VAS) and Korean-Western Ontario MacMaster (K-WOMAC) measurements were used at the screening visit, the fifth intra-articular injection visit, and the last visit. The VAS and K-WOMAC scores decreased after PN treatment and lasted for three months after the final injection. The BSV changed in the middle and deep layers of tibial bone after PN injection. This result could imply that there were microstructural changes in the subchondral bone after PN treatment, and that this change could be detected using the AI algorithm-based texture analysis. In conclusion, the AI- algorithm-based texture analysis could be a promising tool for detecting and assessing the therapeutic outcome in knee OA.

摘要

膝关节骨关节炎(OA)是老年人群中最常见的退行性疾病之一。最近的研究提出了针对软骨下重塑的新治疗方法,软骨下重塑是OA进展的一个典型特征。然而,与这一过程相关的诊断工具或治疗方法仍在研究中。基于人工智能(AI)算法的自动化纹理分析是一种用于OA进展检测的新方法。我们设计了一项前瞻性病例系列研究,以检验基于AI算法的纹理分析在检测软骨下重塑过程恢复情况方面的有效性,预计该恢复情况会在治疗干预后出现。在本研究中,我们使用多核苷酸(PN)填充剂注射作为治疗方式,并通过症状改善以及软骨下微观结构变化的诱导来验证治疗效果。我们使用基于AI算法的纹理分析,通过骨结构值(BSV)来观察软骨下骨的这些变化。本研究共纳入了51名被诊断为膝关节OA的参与者。每周进行一次关节内PN填充剂(HP细胞Vitaran J)注射,共注射五次。在筛查访视时以及筛查后三个月的最后一次访视时进行膝关节X线检查和使用BSV的纹理分析。在筛查访视、第五次关节内注射访视和最后一次访视时使用视觉模拟量表(VAS)和韩国-西安大略和麦克马斯特大学骨关节炎指数(K-WOMAC)进行测量。PN治疗后VAS和K-WOMAC评分下降,并在最后一次注射后持续三个月。PN注射后胫骨骨的中层和深层BSV发生了变化。这一结果可能意味着PN治疗后软骨下骨存在微观结构变化,并且这种变化可以通过基于AI算法的纹理分析检测到。总之,基于AI算法的纹理分析可能是一种用于检测和评估膝关节OA治疗效果的有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b47/9148053/dc7b3086b0a5/jcm-11-02845-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验