School of Software Department, East China Jiaotong University, Nanchang 330013, China.
Sensors (Basel). 2022 May 10;22(10):3637. doi: 10.3390/s22103637.
The emotion-cause pair extraction task is a fine-grained task in text sentiment analysis, which aims to extract all emotions and their underlying causes in a document. Recent studies have addressed the emotion-cause pair extraction task in a step-by-step manner, i.e., the two subtasks of emotion extraction and cause extraction are completed first, followed by the pairing task of emotion-cause pairs. However, this fail to deal well with the potential relationship between the two subtasks and the extraction task of emotion-cause pairs. At the same time, the grammatical information contained in the document itself is ignored. To address the above issues, we propose a deep neural network based on span association prediction for the task of emotion-cause pair extraction, exploiting general grammatical conventions to span-encode sentences. We use the span association pairing method to obtain candidate emotion-cause pairs, and establish a multi-dimensional information interaction mechanism to screen candidate emotion-cause pairs. Experimental results on a quasi-baseline corpus show that our model can accurately extract potential emotion-cause pairs and outperform existing baselines.
情感-原因对抽取任务是文本情感分析中的一个细粒度任务,旨在从文档中提取所有的情感及其潜在原因。最近的研究已经逐步解决了情感-原因对抽取任务,即首先完成情感抽取和原因抽取这两个子任务,然后再进行情感-原因对的配对任务。然而,这种方法未能很好地处理两个子任务之间以及情感-原因对抽取任务之间的潜在关系,同时也忽略了文档本身所包含的语法信息。为了解决上述问题,我们针对情感-原因对抽取任务提出了一种基于跨度关联预测的深度神经网络方法,利用通用语法规则对句子进行跨度编码。我们使用跨度关联配对方法获取候选情感-原因对,并建立多维信息交互机制来筛选候选情感-原因对。在一个准基线语料库上的实验结果表明,我们的模型可以准确地提取潜在的情感-原因对,并优于现有的基线方法。