Suppr超能文献

基于跨度关联预测的深度神经网络在情绪-原因对抽取中的应用。

Deep Neural Networks Based on Span Association Prediction for Emotion-Cause Pair Extraction.

机构信息

School of Software Department, East China Jiaotong University, Nanchang 330013, China.

出版信息

Sensors (Basel). 2022 May 10;22(10):3637. doi: 10.3390/s22103637.

Abstract

The emotion-cause pair extraction task is a fine-grained task in text sentiment analysis, which aims to extract all emotions and their underlying causes in a document. Recent studies have addressed the emotion-cause pair extraction task in a step-by-step manner, i.e., the two subtasks of emotion extraction and cause extraction are completed first, followed by the pairing task of emotion-cause pairs. However, this fail to deal well with the potential relationship between the two subtasks and the extraction task of emotion-cause pairs. At the same time, the grammatical information contained in the document itself is ignored. To address the above issues, we propose a deep neural network based on span association prediction for the task of emotion-cause pair extraction, exploiting general grammatical conventions to span-encode sentences. We use the span association pairing method to obtain candidate emotion-cause pairs, and establish a multi-dimensional information interaction mechanism to screen candidate emotion-cause pairs. Experimental results on a quasi-baseline corpus show that our model can accurately extract potential emotion-cause pairs and outperform existing baselines.

摘要

情感-原因对抽取任务是文本情感分析中的一个细粒度任务,旨在从文档中提取所有的情感及其潜在原因。最近的研究已经逐步解决了情感-原因对抽取任务,即首先完成情感抽取和原因抽取这两个子任务,然后再进行情感-原因对的配对任务。然而,这种方法未能很好地处理两个子任务之间以及情感-原因对抽取任务之间的潜在关系,同时也忽略了文档本身所包含的语法信息。为了解决上述问题,我们针对情感-原因对抽取任务提出了一种基于跨度关联预测的深度神经网络方法,利用通用语法规则对句子进行跨度编码。我们使用跨度关联配对方法获取候选情感-原因对,并建立多维信息交互机制来筛选候选情感-原因对。在一个准基线语料库上的实验结果表明,我们的模型可以准确地提取潜在的情感-原因对,并优于现有的基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a0/9146116/1d1b86c0ea3b/sensors-22-03637-g001.jpg

相似文献

1
Deep Neural Networks Based on Span Association Prediction for Emotion-Cause Pair Extraction.
Sensors (Basel). 2022 May 10;22(10):3637. doi: 10.3390/s22103637.
2
Unifying emotion-oriented and cause-oriented predictions for emotion-cause pair extraction.
Neural Netw. 2024 Oct;178:106431. doi: 10.1016/j.neunet.2024.106431. Epub 2024 Jun 5.
3
MV-SHIF: Multi-view symmetric hypothesis inference fusion network for emotion-cause pair extraction in documents.
Neural Netw. 2024 Jul;175:106283. doi: 10.1016/j.neunet.2024.106283. Epub 2024 Mar 29.
5
Attention-Emotion-Enhanced Convolutional LSTM for Sentiment Analysis.
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4332-4345. doi: 10.1109/TNNLS.2021.3056664. Epub 2022 Aug 31.
6
Improving span-based Aspect Sentiment Triplet Extraction with part-of-speech filtering and contrastive learning.
Neural Netw. 2024 Sep;177:106381. doi: 10.1016/j.neunet.2024.106381. Epub 2024 May 10.
7
Neural Networks with Emotion Associations, Topic Modeling and Supervised Term Weighting for Sentiment Analysis.
Int J Neural Syst. 2021 Oct;31(10):2150013. doi: 10.1142/S0129065721500131. Epub 2021 Feb 10.
8
Two-Way Feature Extraction for Speech Emotion Recognition Using Deep Learning.
Sensors (Basel). 2022 Mar 19;22(6):2378. doi: 10.3390/s22062378.
9
A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
Neural Netw. 2019 Oct;118:208-219. doi: 10.1016/j.neunet.2019.06.010. Epub 2019 Jul 2.
10
Construction and Research on Chinese Semantic Mapping Based on Linguistic Features and Sparse Self-Learning Neural Networks.
Comput Intell Neurosci. 2022 Jun 20;2022:2315802. doi: 10.1155/2022/2315802. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验