Suppr超能文献

基于超像素的雅可比计算的稀疏对抗性视频攻击。

Sparse Adversarial Video Attacks via Superpixel-Based Jacobian Computation.

机构信息

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China.

出版信息

Sensors (Basel). 2022 May 12;22(10):3686. doi: 10.3390/s22103686.

Abstract

Adversarial examples have aroused great attention during the past years owing to their threat to the deep neural networks (DNNs). Recently, they have been successfully extended to video models. Compared with image cases, the sparse adversarial perturbations in the videos can not only reduce the computation complexity, but also guarantee the crypticity of adversarial examples. In this paper, we propose an efficient attack to generate adversarial video perturbations with large sparsity in both the temporal (inter-frames) and spatial (intra-frames) domains. Specifically, we select the key frames and key pixels according to the gradient feedback of the target models by computing the forward derivative, and then add the perturbations on them. To overcome the problem of dimensional explosion in the video, we introduce super-pixels to decrease the number of pixels that need to compute gradients. The proposed method is finally verified under both the white-box and black-box settings. We estimate the gradients using natural evolution strategy (NES) in the black-box attacks. The experiments are conducted on two widely used datasets: UCF101 and HMDB51 versus two mainstream models: C3D and LRCN. Results show that compared with the state-of-the-art method, our method can achieve the similar attacking performance, but it pollutes only <1% pixels and costs less time to finish the attacks.

摘要

对抗样本在过去几年中引起了极大的关注,因为它们对深度神经网络(DNNs)构成了威胁。最近,它们已经成功地扩展到视频模型中。与图像情况相比,视频中的稀疏对抗性扰动不仅可以降低计算复杂度,还可以保证对抗性示例的机密性。在本文中,我们提出了一种有效的攻击方法,能够在时间(帧间)和空间(帧内)域中生成具有较大稀疏性的对抗性视频扰动。具体来说,我们通过计算前向导数,根据目标模型的梯度反馈选择关键帧和关键像素,然后在它们上面添加扰动。为了克服视频中维度爆炸的问题,我们引入了超像素来减少需要计算梯度的像素数量。所提出的方法最终在白盒和黑盒设置下进行了验证。在黑盒攻击中,我们使用自然进化策略(NES)估计梯度。实验在两个广泛使用的数据集:UCF101 和 HMDB51 上进行,针对两个主流模型:C3D 和 LRCN。结果表明,与最先进的方法相比,我们的方法可以达到类似的攻击性能,但仅污染 <1%的像素,并且花费更少的时间完成攻击。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9515/9144869/a60da31ee3f7/sensors-22-03686-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验