Suppr超能文献

COCTS/HY-1C 海面温度产品的验证和改进。

Validation and Improvement of COCTS/HY-1C Sea Surface Temperature Products.

机构信息

Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Science, Peking University, Beijing 100871, China.

Key Laboratory of Space Ocean Remote Sensing and Application, National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China.

出版信息

Sensors (Basel). 2022 May 13;22(10):3726. doi: 10.3390/s22103726.

Abstract

In oceanographic study, satellite-based sea surface temperature (SST) retrieval has always been the focus of researchers. This paper investigates several multi-channel SST retrieval algorithms for the thermal infrared band, and evaluates the accuracy of the COCTS/HY-1C SST products. NEAR-GOOS in situ SST data are utilized for validation and improvement, and a three-step matching procedure including geographic location screening, cloud masking, and homogeneity check is conducted to match in situ SST data with satellite SST data. Two improvement schemes, including nonlinear regression and regularization iteration, are proposed to improve the accuracy of the COCTS/HY-1C SST products and the typical application scenarios and the algorithm characteristics of these two schemes are discussed. The standard deviation of residual between retrieved SST and measured SST for these two data improvement algorithms, which are considered as the main indexes for assessment, result in an improvement of 13.245% and 14.096%, respectively. In addition, the generalization ability of the SST models under two data improvement methods is quantitatively compared, and the factors affecting the model accuracy are also carefully evaluated, including the in situ data acquisition method and measurement time (day/night). Finally, future works about SST retrieval with COCTS/HY-1C satellite data are summarized.

摘要

在海洋学研究中,基于卫星的海面温度(SST)反演一直是研究人员关注的焦点。本文研究了几种用于热红外波段的多通道 SST 反演算法,并评估了 COCTS/HY-1C SST 产品的准确性。利用近实时全球观测系统(NEAR-GOOS)的现场 SST 数据进行验证和改进,并采用包括地理位置筛选、云掩蔽和均一性检查的三步匹配程序,将现场 SST 数据与卫星 SST 数据进行匹配。提出了两种改进方案,包括非线性回归和正则化迭代,以提高 COCTS/HY-1C SST 产品的准确性,并讨论了这两种方案的典型应用场景和算法特点。考虑到评估的主要指标,这两种数据改进算法的反演 SST 与实测 SST 之间的残差标准偏差分别提高了 13.245%和 14.096%。此外,还定量比较了两种数据改进方法下 SST 模型的泛化能力,并仔细评估了影响模型精度的因素,包括现场数据采集方法和测量时间(白天/晚上)。最后,总结了使用 COCTS/HY-1C 卫星数据进行 SST 反演的未来工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a393/9145735/ed46237b14cf/sensors-22-03726-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验