Suppr超能文献

携带位置无关集成机器学习计步算法的智能手机。

Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones.

机构信息

Department of Management Information Systems, Graduate School, Dong-A University, Busan 49315, Korea.

Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Korea.

出版信息

Sensors (Basel). 2022 May 13;22(10):3736. doi: 10.3390/s22103736.

Abstract

Current step-count estimation techniques use either an accelerometer or gyroscope sensors to calculate the number of steps. However, because of smartphones unfixed placement and direction, their accuracy is insufficient. It is necessary to consider the impact of the carrying position on the accuracy of the pedometer algorithm, because of people carry their smartphones in various positions. Therefore, this study proposes a carrying-position independent ensemble step-counting algorithm suitable for unconstrained smartphones in different carrying positions. The proposed ensemble algorithm comprises a classification algorithm that identifies the carrying position of the smartphone, and a regression algorithm that considers the identified carrying position and calculates the number of steps. Furthermore, a data acquisition system that collects (i) label data in the form of the number of steps estimated from the Force Sensitive Resistor (FSR) sensors, and (ii) input data in the form of the three-axis acceleration data obtained from the smartphones is also proposed. The obtained data were used to allow the machine learning algorithms to fit the signal features of the different carrying positions. The reliability of the proposed ensemble algorithms, comprising a random forest classifier and a regression model, was comparatively evaluated with a commercial pedometer application. The results indicated that the proposed ensemble algorithm provides higher accuracy, ranging from 98.1% to 98.8%, at self-paced walking speed than the commercial pedometer application, and the machine learning-based ensemble algorithms can effectively and accurately predict step counts under different smart phone carrying positions.

摘要

目前的计步估算技术使用加速度计或陀螺仪传感器来计算步数。然而,由于智能手机的位置和方向不固定,其准确性不足。有必要考虑携带位置对计步算法准确性的影响,因为人们会在各种位置携带智能手机。因此,本研究提出了一种适用于无约束智能手机在不同携带位置的独立携带位置集成计步算法。所提出的集成算法包括一个分类算法,用于识别智能手机的携带位置,以及一个回归算法,用于考虑识别出的携带位置并计算步数。此外,还提出了一个数据采集系统,用于采集(i)以 Force Sensitive Resistor(FSR)传感器估计的步数形式的标签数据,以及(ii)以从智能手机获得的三轴加速度数据形式的输入数据。所获得的数据用于让机器学习算法拟合不同携带位置的信号特征。使用商用计步器应用程序比较评估了包含随机森林分类器和回归模型的所提出的集成算法的可靠性。结果表明,所提出的集成算法在自步速下提供了比商用计步器应用更高的准确性,范围从 98.1%到 98.8%,并且基于机器学习的集成算法可以有效地和准确地预测不同智能手机携带位置下的步数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b626/9144748/5e3c50fa7e05/sensors-22-03736-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验