Suppr超能文献

一种用于低成本检测和监测车辆排放的 TinyML 软传感器方法。

A TinyML Soft-Sensor Approach for Low-Cost Detection and Monitoring of Vehicular Emissions.

作者信息

Andrade Pedro, Silva Ivanovitch, Silva Marianne, Flores Thommas, Cassiano Jordão, Costa Daniel G

机构信息

Postgraduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.

Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.

出版信息

Sensors (Basel). 2022 May 19;22(10):3838. doi: 10.3390/s22103838.

Abstract

Vehicles are the major source of air pollution in modern cities, emitting excessive levels of CO and other noxious gases. Exploiting the OBD-II interface available on most vehicles, the continuous emission of such pollutants can be indirectly measured over time, although accuracy has been an important design issue when performing this task due the nature of the retrieved data. In this scenario, soft-sensor approaches can be adopted to process engine combustion data such as fuel injection and mass air flow, processing them to estimate pollution and transmitting the results for further analyses. Therefore, this article proposes a soft-sensor solution based on an embedded system designed to retrieve data from vehicles through their OBD-II interface, processing different inputs to provide estimated values of CO emissions over time. According to the type of data provided by the vehicle, two different algorithms are defined, and each follows a comprehensive mathematical formulation. Moreover, an unsupervised TinyML approach is also derived to remove outliers data when processing the computed data stream, improving the accuracy of the soft sensor as a whole while not requiring any interaction with cloud-based servers to operate. Initial results for an embedded implementation on the Freematics ONE+ board have shown the proposal's feasibility with an acquisition frequency equal to 1Hz and emission granularity measure of gCO/km.

摘要

车辆是现代城市空气污染的主要来源,排放过量的一氧化碳和其他有害气体。利用大多数车辆上配备的车载诊断系统第二代(OBD-II)接口,可以随着时间的推移间接测量此类污染物的持续排放,不过由于所获取数据的性质,在执行此任务时,准确性一直是一个重要的设计问题。在这种情况下,可以采用软传感器方法来处理发动机燃烧数据,如燃油喷射和空气质量流量,对其进行处理以估算污染情况,并传输结果以供进一步分析。因此,本文提出了一种基于嵌入式系统的软传感器解决方案,该系统旨在通过车辆的OBD-II接口从车辆中检索数据,处理不同的输入以提供一氧化碳排放随时间的估计值。根据车辆提供的数据类型,定义了两种不同的算法,每种算法都遵循一个全面的数学公式。此外,还推导了一种无监督的微小机器学习方法,用于在处理计算出的数据流时去除异常值数据,提高整个软传感器的准确性,同时无需与基于云的服务器进行任何交互即可运行。在Freematics ONE+开发板上进行嵌入式实现的初步结果表明,该方案在采集频率为1Hz和排放粒度测量为gCO/km的情况下是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7f/9143421/5281f545f428/sensors-22-03838-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验