Suppr超能文献

ID-Seg:一个基于深度学习的婴儿分割框架,用于改进边缘结构估计。

ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates.

作者信息

Wang Yun, Haghpanah Fateme Sadat, Zhang Xuzhe, Santamaria Katie, da Costa Aguiar Alves Gabriela Koch, Bruno Elizabeth, Aw Natalie, Maddocks Alexis, Duarte Cristiane S, Monk Catherine, Laine Andrew, Posner Jonathan

机构信息

Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.

New York State Psychiatric Institute, New York, NY, USA.

出版信息

Brain Inform. 2022 May 28;9(1):12. doi: 10.1186/s40708-022-00161-9.

Abstract

Infant brain magnetic resonance imaging (MRI) is a promising approach for studying early neurodevelopment. However, segmenting small regions such as limbic structures is challenging due to their low inter-regional contrast and high curvature. MRI studies of the adult brain have successfully applied deep learning techniques to segment limbic structures, and similar deep learning models are being leveraged for infant studies. However, these deep learning-based infant MRI segmentation models have generally been derived from small datasets, and may suffer from generalization problems. Moreover, the accuracy of segmentations derived from these deep learning models relative to more standard Expectation-Maximization approaches has not been characterized. To address these challenges, we leveraged a large, public infant MRI dataset (n = 473) and the transfer-learning technique to first pre-train a deep convolutional neural network model on two limbic structures: amygdala and hippocampus. Then we used a leave-one-out cross-validation strategy to fine-tune the pre-trained model and evaluated it separately on two independent datasets with manual labels. We term this new approach the Infant Deep learning SEGmentation Framework (ID-Seg). ID-Seg performed well on both datasets with a mean dice similarity score (DSC) of 0.87, a mean intra-class correlation (ICC) of 0.93, and a mean average surface distance (ASD) of 0.31 mm. Compared to the Developmental Human Connectome pipeline (dHCP) pipeline, ID-Seg significantly improved segmentation accuracy. In a third infant MRI dataset (n = 50), we used ID-Seg and dHCP separately to estimate amygdala and hippocampus volumes and shapes. The estimates derived from ID-seg, relative to those from the dHCP, showed stronger associations with behavioral problems assessed in these infants at age 2. In sum, ID-Seg consistently performed well on two different datasets with an 0.87 DSC, however, multi-site testing and extension for brain regions beyond the amygdala and hippocampus are still needed.

摘要

婴儿脑磁共振成像(MRI)是研究早期神经发育的一种很有前景的方法。然而,由于边缘结构等小区域的区域间对比度低且曲率高,对其进行分割具有挑战性。成人大脑的MRI研究已成功应用深度学习技术来分割边缘结构,类似的深度学习模型也被用于婴儿研究。然而,这些基于深度学习的婴儿MRI分割模型通常来自小数据集,可能存在泛化问题。此外,相对于更标准的期望最大化方法,这些深度学习模型得出的分割准确性尚未得到表征。为应对这些挑战,我们利用一个大型公开婴儿MRI数据集(n = 473)和迁移学习技术,首先在杏仁核和海马体这两个边缘结构上对一个深度卷积神经网络模型进行预训练。然后我们使用留一法交叉验证策略对预训练模型进行微调,并在两个带有手动标注的独立数据集上分别对其进行评估。我们将这种新方法称为婴儿深度学习分割框架(ID-Seg)。ID-Seg在两个数据集上均表现良好,平均骰子相似性得分(DSC)为0.87,平均类内相关性(ICC)为0.93,平均平均表面距离(ASD)为0.31毫米。与发育人类连接组管道(dHCP)相比,ID-Seg显著提高了分割准确性。在第三个婴儿MRI数据集(n = 50)中,我们分别使用ID-Seg和dHCP来估计杏仁核和海马体的体积与形状。相对于dHCP得出的估计值,ID-Seg得出的估计值与这些婴儿2岁时评估的行为问题显示出更强的关联。总之,ID-Seg在两个不同数据集上始终表现良好,DSC为0.87,然而,仍需要进行多站点测试以及对杏仁核和海马体以外的脑区进行扩展研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26bf/9148335/db92138b8718/40708_2022_161_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验