Suppr超能文献

基于广义矩方法的惩罚线性混合模型在高维多组学数据预测分析中的应用。

A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data.

机构信息

Department of Statistics, University of Auckland, 38 Princes Street, 1010, Auckland, New Zealand.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac193.

Abstract

With the advances in high-throughput biotechnologies, high-dimensional multi-layer omics data become increasingly available. They can provide both confirmatory and complementary information to disease risk and thus have offered unprecedented opportunities for risk prediction studies. However, the high-dimensionality and complex inter/intra-relationships among multi-omics data have brought tremendous analytical challenges. Here we present a computationally efficient penalized linear mixed model with generalized method of moments estimator (MpLMMGMM) for the prediction analysis on multi-omics data. Our method extends the widely used linear mixed model proposed for genomic risk predictions to model multi-omics data, where kernel functions are used to capture various types of predictive effects from different layers of omics data and penalty terms are introduced to reduce the impact of noise. Compared with existing penalized linear mixed models, the proposed method adopts the generalized method of moments estimator and it is much more computationally efficient. Through extensive simulation studies and the analysis of positron emission tomography imaging outcomes, we have demonstrated that MpLMMGMM can simultaneously consider a large number of variables and efficiently select those that are predictive from the corresponding omics layers. It can capture both linear and nonlinear predictive effects and achieves better prediction performance than competing methods.

摘要

随着高通量生物技术的进步,高维多层次的组学数据变得越来越丰富。它们可以为疾病风险提供确认性和补充性信息,从而为风险预测研究提供了前所未有的机会。然而,多组学数据的高维性和复杂的内部/内部关系带来了巨大的分析挑战。在这里,我们提出了一种计算效率高的惩罚线性混合模型,具有广义矩估计(MpLMMGMM),用于多组学数据的预测分析。我们的方法扩展了广泛用于基因组风险预测的线性混合模型,用于建模多组学数据,其中核函数用于捕获不同组学数据层的各种类型的预测效果,并引入惩罚项来减少噪声的影响。与现有的惩罚线性混合模型相比,所提出的方法采用了广义矩估计,计算效率更高。通过广泛的模拟研究和正电子发射断层扫描成像结果的分析,我们已经证明,MpLMMGMM 可以同时考虑大量变量,并从相应的组学层中有效地选择具有预测性的变量。它可以捕获线性和非线性预测效果,并比竞争方法实现更好的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8443/9310531/839d16b1e976/bbac193f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验