Suppr超能文献

生物纤维素纳米晶体的尺寸使断裂强度最大化。

Dimensions of Biological Cellulose Nanocrystals Maximize Fracture Strength.

作者信息

Sinko Robert, Mishra Shawn, Ruiz Luis, Brandis Nick, Keten Sinan

机构信息

Department of Civil and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208, United States.

出版信息

ACS Macro Lett. 2014 Jan 21;3(1):64-69. doi: 10.1021/mz400471y. Epub 2013 Dec 27.

Abstract

Cellulose nanocrystals (CNCs) exhibit outstanding mechanical properties exceeding that of Kevlar, serving as reinforcing domains in nature's toughest biological nanocomposites such as wood. To establish a molecular-level understanding of how CNCs develop high resistance to failure, here we present new analyses based on atomistic simulations on the fracture energy of Iβ CNCs. We show that the fracture energy depends on the crystal width, due to edge defects that significantly reduce the fracture energy of small crystals but have a negligible effect beyond a critical width. Additionally, collective effects of sheet stacking and stabilization by van der Waals interactions saturate at a critical crystal thickness that we predict with an analytical relationship based on a physical model. Remarkably, ideal dimensions optimizing fracture energy are found to be 4.8-5.6 nm in thickness (approximately 6-7 layers) and 6.2-7.3 nm in width (approximately 6-7 cellulose chains), which correspond to the common dimensions of CNCs found in nature. Our studies shed light on evolutionary principles that provide guidance toward high mechanical performance in natural and synthetic nanobiocomposites.

摘要

纤维素纳米晶体(CNCs)展现出超过凯夫拉尔纤维的出色机械性能,在自然界最坚韧的生物纳米复合材料(如木材)中充当增强区域。为了从分子层面理解CNCs如何形成高抗断裂性,在此我们基于对Iβ型CNCs断裂能的原子模拟提出新的分析。我们表明,由于边缘缺陷显著降低小晶体的断裂能,但在超过临界宽度后影响可忽略不计,因此断裂能取决于晶体宽度。此外,通过基于物理模型的解析关系预测,在临界晶体厚度时,片层堆叠和范德华相互作用的稳定化的集体效应达到饱和。值得注意的是,优化断裂能的理想尺寸为厚度4.8 - 5.6纳米(约6 - 7层)和宽度6.2 - 7.3纳米(约6 - 7条纤维素链),这与自然界中发现的CNCs的常见尺寸相对应。我们的研究揭示了进化原理,为天然和合成纳米生物复合材料的高机械性能提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验