Suppr超能文献

精细的城市碳排放空间分辨率建模:以上海为例。

A fine spatial resolution modeling of urban carbon emissions: a case study of Shanghai, China.

机构信息

School of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.

Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200041, China.

出版信息

Sci Rep. 2022 Jun 3;12(1):9255. doi: 10.1038/s41598-022-13487-5.

Abstract

Quantification of fossil fuel carbon dioxide emissions (CEs) at fine space and time resolution is a critical need in climate change research and carbon cycle. Quantifying changes in spatiotemporal patterns of urban CEs is important to understand carbon cycle and development carbon reduction strategies. The existing spatial data of CEs have low resolution and cannot distinguish the distribution characteristics of CEs of different emission sectors. This study quantified CEs from 15 types of energy sources, including residential, tertiary, and industrial sectors in Shanghai. Additionally, we mapped the CEs for the three sectors using point of interest data and web crawler technology, which is different from traditional methods. At a resolution of 30 m, the improved CEs data has a higher spatial resolution than existing studies. The spatial distribution of CEs based on this study has higher spatial resolution and more details than that based on traditional methods, and can distinguish the spatial distribution characteristics of different sectors. The results indicated that there was a consistent increase in CEs during 2000-2015, with a low rate of increase during 2009-2015. The intensity of CEs increased significantly in the outskirts of the city, mainly due to industrial transfer. Moreover, intensity of CEs reduced in city center. Technological progress has promoted the improvement of energy efficiency, and there has been a decoupling between the economic development and CEs in the city was observed during in 2000-2015.

摘要

量化化石燃料二氧化碳排放(CEs)在精细的时空分辨率下是气候变化研究和碳循环中的关键需求。量化城市CEs 时空格局的变化对于理解碳循环和制定碳减排策略非常重要。现有的 CEs 空间数据分辨率较低,无法区分不同排放部门的 CEs 分布特征。本研究量化了上海市 15 种能源类型(包括住宅、第三产业和工业部门)的 CEs。此外,我们还使用兴趣点数据和网络爬虫技术对这三个部门的 CEs 进行了绘制,这与传统方法不同。在 30m 的分辨率下,改进后的 CEs 数据具有比现有研究更高的空间分辨率。基于本研究的 CEs 空间分布比基于传统方法的空间分布具有更高的空间分辨率和更多的细节,并且可以区分不同部门的空间分布特征。结果表明,2000-2015 年间 CEs 持续增加,2009-2015 年间增加率较低。城市郊区的 CEs 强度显著增加,主要是由于工业转移。此外,市中心的 CEs 强度降低。技术进步促进了能源效率的提高,并且在 2000-2015 年间观察到城市经济发展与 CEs 之间出现了脱钩现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfb/9166736/8c63ed225dac/41598_2022_13487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验