Suppr超能文献

通过机器学习分析免疫细胞谱系和表面标志物预测肺癌免疫治疗反应。

Prediction of lung cancer immunotherapy response via machine learning analysis of immune cell lineage and surface markers.

机构信息

School of Medicine, University of Louisville, Louisville, KY, USA.

Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA.

出版信息

Cancer Biomark. 2022;34(4):681-692. doi: 10.3233/CBM-210529.

Abstract

BACKGROUND

Although advances have been made in cancer immunotherapy, patient benefits remain elusive. For non-small cell lung cancer (NSCLC), monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have shown survival benefit compared to chemotherapy. Personalization of treatment would be facilitated by a priori identification of patients likely to benefit.

OBJECTIVE

This pilot study applied a suite of machine learning methods to analyze mass cytometry data of immune cell lineage and surface markers from blood samples of a small cohort (n= 13) treated with Pembrolizumab, Atezolizumab, Durvalumab, or Nivolumab as monotherapy.

METHODS

Four different comparisons were evaluated between data collected at an initial visit (baseline), after 12-weeks of immunotherapy, and from healthy (control) samples: healthy vs patients at baseline, Responders vs Non-Responders at baseline, Healthy vs 12-week Responders, and Responders vs Non-Responders at 12-weeks. The algorithms Random Forest, Partial Least Squares Discriminant Analysis, Multi-Layer Perceptron, and Elastic Net were applied to find features differentiating between these groups and provide for the capability to predict outcomes.

RESULTS

Particular combinations and proportions of immune cell lineage and surface markers were sufficient to accurately discriminate between the groups without overfitting the data. In particular, markers associated with the B-cell phenotype were identified as key features.

CONCLUSIONS

This study illustrates a comprehensive machine learning analysis of circulating immune cell characteristics of NSCLC patients with the potential to predict response to immunotherapy. Upon further evaluation in a larger cohort, the proposed methodology could help guide personalized treatment selection in clinical practice.

摘要

背景

尽管癌症免疫疗法取得了进展,但患者获益仍难以捉摸。对于非小细胞肺癌(NSCLC),与化疗相比,靶向程序性死亡-1(PD-1)和程序性死亡配体-1(PD-L1)的单克隆抗体显示出生存获益。通过预先识别可能受益的患者,可以促进治疗的个性化。

目的

本研究应用了一系列机器学习方法,对接受 Pembrolizumab、Atezolizumab、Durvalumab 或 Nivolumab 单药治疗的小队列(n=13)的血液样本中的免疫细胞谱系和表面标志物的质谱细胞术数据进行分析。

方法

在初始访视(基线)、免疫治疗 12 周后以及健康(对照)样本之间,对四种不同的比较进行了评估:基线时健康与患者、基线时应答者与非应答者、健康与 12 周时应答者以及 12 周时应答者与非应答者。随机森林、偏最小二乘判别分析、多层感知机和弹性网络算法被应用于寻找区分这些组的特征,并提供预测结果的能力。

结果

特定的免疫细胞谱系和表面标志物的组合和比例足以准确区分这些组,而不会过度拟合数据。特别是,与 B 细胞表型相关的标志物被确定为关键特征。

结论

本研究说明了对 NSCLC 患者循环免疫细胞特征的全面机器学习分析,有可能预测免疫治疗的反应。在更大的队列中进一步评估后,所提出的方法学可以帮助指导临床实践中的个性化治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验