Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
Department of Microbiology, Second Military Medical University, Shanghai, China.
Front Immunol. 2022 May 19;13:851642. doi: 10.3389/fimmu.2022.851642. eCollection 2022.
The rapid evolution of highly infectious pathogens is a major threat to global public health. In the front line of defense against bacteria, fungi, and viruses, antimicrobial peptides (AMPs) are naturally produced by all living organisms and offer new possibilities for next-generation antibiotic development. However, the low yields and difficulties in the extraction and purification of AMPs have hindered their industry and scientific research applications. To overcome these barriers, we enabled high expression of bomidin, a commercial recombinant AMP based upon bovine myeloid antimicrobial peptide-27. This novel AMP, which can be expressed in Escherichia coli by adding methionine to the bomidin sequence, can be produced in bulk and is more biologically active than chemically synthesized AMPs. We verified the function of bomidin against a variety of bacteria and enveloped viruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), herpes simplex virus (HSV), dengue virus (DENV), and chikungunya virus (CHIKV). Furthermore, based on the molecular modeling of bomidin and membrane lipids, we elucidated the possible mechanism by which bomidin disrupts bacterial and viral membranes. Thus, we obtained a novel AMP with an optimized, efficient heterologous expression system for potential therapeutic application against a wide range of life-threatening pathogens.
高度传染性病原体的快速进化是对全球公共卫生的主要威胁。在对抗细菌、真菌和病毒的第一道防线中,抗菌肽(AMPs)是所有生物自然产生的,为下一代抗生素的开发提供了新的可能性。然而,AMPs 的产量低,提取和纯化困难,这阻碍了它们在工业和科学研究中的应用。为了克服这些障碍,我们实现了商业重组 AMP——基于牛髓过氧化物酶体 27 的 bomidin 的高效表达。通过在 bomidin 序列中添加蛋氨酸,可以在大肠杆菌中大量表达这种新型 AMP,其生物活性比化学合成的 AMP 更高。我们验证了 bomidin 对多种细菌和包膜病毒的作用,包括严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)、单纯疱疹病毒(HSV)、登革热病毒(DENV)和基孔肯雅热病毒(CHIKV)。此外,基于 bomidin 与膜脂的分子建模,我们阐明了 bomidin 破坏细菌和病毒膜的可能机制。因此,我们获得了一种新型 AMP,其具有优化的、高效的异源表达系统,可用于针对多种危及生命的病原体的潜在治疗应用。