Suppr超能文献

中国持续空气污染的时空分布及其与社会经济和自然因素的关系。

Spatiotemporal Distribution of Continuous Air Pollution and Its Relationship with Socioeconomic and Natural Factors in China.

机构信息

School of Management, Zhejiang University of Technology, Hangzhou 310023, China.

Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276012, China.

出版信息

Int J Environ Res Public Health. 2022 May 29;19(11):6635. doi: 10.3390/ijerph19116635.

Abstract

Continuous air pollution (CAP) incidents last even longer and generate greater health hazards relative to conventional air pollution episodes. However, few studies have focused on the spatiotemporal distribution characteristics and driving factors of CAP in China. Drawing on the daily reported ground monitoring data on the ambient air quality in 2019 in China, this paper identifies the spatiotemporal distribution characteristics of CAP across 337 Chinese cities above the prefecture level using descriptive statistics and spatial statistical analysis methods, and further examines the spatial heterogeneity effects of both socioeconomic factors and natural factors on CAP with a Multiscale Geographically Weighted Regression (MGWR) model. The results show that the average proportion of CAP days in 2019 reached 11.50% of the whole year across Chinese cities, a figure equaling to about 65 days, while the average frequency, the maximum amount of days and the average amount of days of CAP were 8.02 times, 7.85 days and 4.20 days, respectively. Furthermore, there was a distinct spatiotemporal distribution disparity in CAP in China. Spatially, the areas with high proportions of CAP days were concentrated in the North China Plain and the Southwestern Xinjiang Autonomous Region in terms of the spatial pattern, while the proportion of CAP days showed a monthly W-shaped change in terms of the temporal pattern. In addition, the types of regions containing major pollutants during the CAP period could be divided into four types, including "Composite pollution", "O + NO pollution", "PM + PM pollution" and "O + PM pollution", while the region type "PM + PM pollution" covered the highest number of cities. The MGWR model, characterized by multiple spatial scale impacts among the driving factors, outperformed the traditional OLS and GWR model, and both socioeconomic factors and natural factors were found to have a spatial non-stationary relationship with CAP in China. Our findings provide new policy insights for understanding the spatiotemporal distribution characteristics of CAP in urban China and can help the Chinese government make prevention and control measures of CAP incidents.

摘要

持续空气污染 (CAP) 事件持续时间更长,相对于传统空气污染事件产生更大的健康危害。然而,很少有研究关注中国 CAP 的时空分布特征和驱动因素。本文利用 2019 年中国每日地面监测的环境空气质量报告数据,采用描述性统计和空间统计分析方法,识别了 337 个中国地级市以上城市的 CAP 时空分布特征,并进一步利用多尺度地理加权回归 (MGWR) 模型检验了社会经济因素和自然因素对 CAP 的空间异质性影响。结果表明,2019 年中国城市 CAP 日的平均比例达到全年的 11.50%,相当于约 65 天,而 CAP 日的平均频率、最大天数和平均天数分别为 8.02 倍、7.85 天和 4.20 天。此外,中国 CAP 存在明显的时空分布差异。空间上,CAP 天数比例高的地区集中在华北平原和南疆的西南地区,空间格局呈点状分布;时间上,CAP 天数比例呈逐月 W 型变化。此外,CAP 期间主要污染物的区域类型可分为“复合型污染”、“O+NO 污染”、“PM+PM 污染”和“O+PM 污染”四种类型,其中“PM+PM 污染”类型涵盖的城市最多。MGWR 模型具有驱动因素多空间尺度影响的特点,优于传统的 OLS 和 GWR 模型,在中国,社会经济因素和自然因素与 CAP 均存在空间非平稳关系。本研究结果为了解中国城市 CAP 的时空分布特征提供了新的政策见解,并有助于中国政府制定 CAP 事件的预防和控制措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd3/9180089/51887737f51d/ijerph-19-06635-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验