Suppr超能文献

通过具有原子厚度的单分子双层石墨烯结的电荷传输。

Charge transport through single-molecule bilayer-graphene junctions with atomic thickness.

作者信息

Zhao Shiqiang, Deng Ze-Ying, Albalawi Shadiah, Wu Qingqing, Chen Lijue, Zhang Hewei, Zhao Xin-Jing, Hou Hao, Hou Songjun, Dong Gang, Yang Yang, Shi Jia, Lambert Colin J, Tan Yuan-Zhi, Hong Wenjing

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

Department of Physics, Lancaster University Lancaster LA1 4YB UK

出版信息

Chem Sci. 2022 Mar 30;13(20):5854-5859. doi: 10.1039/d1sc07024j. eCollection 2022 May 25.

Abstract

The van der Waals interactions (vdW) between π-conjugated molecules offer new opportunities for fabricating heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. The experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale.

摘要

π共轭分子之间的范德华相互作用(vdW)为制造基于异质结的器件以及研究具有原子厚度的异质结中的电荷传输提供了新的机会。在这项工作中,我们通过范德华相互作用制造了夹心式单分子双层石墨烯结,并采用平面断裂结(XPBJ)技术表征其电输运性质。实验结果表明,通过单分子结的平面电荷传输由这些结中分子石墨烯的尺寸和层数决定。密度泛函理论(DFT)计算表明,这些分子结中通过分子石墨烯的电荷传输对石墨烯薄片与外围均三甲苯基之间的角度敏感,并且那些旋转的基团可用于调节电导率。这项研究为原子级薄结中的平面电荷传输提供了新的见解,并突出了分子尺度下范德华异质结中空间相互作用的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d854/9132082/ff188be57e56/d1sc07024j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验