Langmuir. 2022 Jul 5;38(26):7867-7888. doi: 10.1021/acs.langmuir.2c00630. Epub 2022 Jun 10.
Stimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-by-layer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically cross-linked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure-property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified "multicompartment" hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.
刺激响应型多层水凝胶为设计具有纳米尺度控制性能的分级组织网络提供了新的机会。这些多层材料集成了交替层状聚合物沉积提供的结构、形态和组成多功能性,以及在环境触发下体积发生剧烈和可逆变化的能力,这是化学交联响应网络的特征。尽管它们具有诱人的潜力,但对多层水凝胶的结构-性能关系的了解有限,部分原因是调节网络结构组织的挑战以及解决纳米空间分辨率下结构和性能的仪器库有限。本文重点介绍了我们在推进多层水凝胶的组装技术、基础研究和应用方面的最新研究进展。讨论了合成策略、化学组成和水凝胶结构之间的基本关系,以及它们对刺激诱导体积变化、形态和机械响应的影响。我们介绍了我们对薄多层水凝胶涂层的研究概述,重点是控制和量化层混合的程度,这是设计具有可预测性能的水凝胶的关键问题。我们还揭示了分层“多隔室”水凝胶在 pH 和温度变化下的行为。我们总结了自由支撑多层水凝胶的机械响应,包括具有封闭几何形状的平面薄涂层和薄膜,如中空微胶囊和具有球形和非球形形状的非中空水凝胶微球。最后,我们将展示 pH 和温度敏感多层水凝胶在传感和药物输送中的潜在应用。对多层水凝胶的了解可以推进具有可预测和可调谐性能的聚合物网络的合理设计,为现代聚合物科学做出贡献,并拓宽水凝胶的应用。