Suppr超能文献

HGNN:广义超图神经网络。

HGNN: General Hypergraph Neural Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3181-3199. doi: 10.1109/TPAMI.2022.3182052. Epub 2023 Feb 3.

Abstract

Graph Neural Networks have attracted increasing attention in recent years. However, existing GNN frameworks are deployed based upon simple graphs, which limits their applications in dealing with complex data correlation of multi-modal/multi-type data in practice. A few hypergraph-based methods have recently been proposed to address the problem of multi-modal/multi-type data correlation by directly concatenating the hypergraphs constructed from each single individual modality/type, which is difficult to learn an adaptive weight for each modality/type. In this paper, we extend the original conference version HGNN, and introduce a general high-order multi-modal/multi-type data correlation modeling framework called HGNN to learn an optimal representation in a single hypergraph based framework. It is achieved by bridging multi-modal/multi-type data and hyperedge with hyperedge groups. Specifically, in our method, hyperedge groups are first constructed to represent latent high-order correlations in each specific modality/type with explicit or implicit graph structures. An adaptive hyperedge group fusion strategy is then used to effectively fuse the correlations from different modalities/types in a unified hypergraph. After that a new hypergraph convolution scheme performed in spatial domain is used to learn a general data representation for various tasks. We have evaluated this framework on several popular datasets and compared it with recent state-of-the-art methods. The comprehensive evaluations indicate that the proposed HGNN framework can consistently outperform existing methods with a significant margin, especially when modeling implicit data correlations. We also release a toolbox called THU-DeepHypergraph for the proposed framework, which can be used for various of applications, such as data classification, retrieval and recommendation.

摘要

图神经网络近年来受到了越来越多的关注。然而,现有的 GNN 框架是基于简单图部署的,这限制了它们在处理实际中多模态/多类型数据的复杂数据相关性方面的应用。最近提出了一些基于超图的方法来解决多模态/多类型数据相关性的问题,这些方法通过直接连接从每个单一模态/类型构建的超图来实现,这很难为每个模态/类型学习自适应权重。在本文中,我们扩展了原始的会议版本 HGNN,并引入了一个通用的高阶多模态/多类型数据相关性建模框架 HGNN,以在单个超图框架中学习最佳表示。它通过桥接多模态/多类型数据和超边与超边组来实现。具体来说,在我们的方法中,首先构建超边组来表示具有显式或隐式图结构的每个特定模态/类型中的潜在高阶相关性。然后使用自适应超边组融合策略来有效地融合来自不同模态/类型的相关性在统一的超图中。之后,使用在空间域中执行的新的超图卷积方案来学习各种任务的通用数据表示。我们在几个流行的数据集上评估了这个框架,并与最近的最先进的方法进行了比较。综合评估表明,所提出的 HGNN 框架可以始终显著优于现有方法,尤其是在建模隐式数据相关性时。我们还发布了一个名为 THU-DeepHypergraph 的工具包,用于所提出的框架,它可用于各种应用,如数据分类、检索和推荐。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验