Egerton R F, Watanabe M
Physics Department, University of Alberta, Edmonton T6G 2E1, Canada.
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA.
Micron. 2022 Sep;160:103304. doi: 10.1016/j.micron.2022.103304. Epub 2022 Jun 3.
We review the practical factors that determine the spatial resolution of transmission electron microscopy (TEM) and scanning-transmission electron microscopy (STEM), then enumerate the advantages of representing resolution in terms of a point-spread function. PSFs are given for the major resolution-limiting factors: aperture diffraction, spherical and chromatic aberration, beam divergence, beam broadening, Coulomb delocalization, radiolysis damage and secondary-electron generation from adatoms or atoms in a matrix. We note various definitions of beam broadening, complications of describing this effect in very thin specimens, and ways of optimizing the resolution in bright-field STEM of thick samples. Beam spreading in amorphous and crystalline materials is compared by means of simulations. For beam-sensitive specimens, we emphasize the importance of dose-limited resolution (DLR) and briefly recognize efforts to overcome the fundamental resolution limits set by the wave and particle properties of electrons.
我们回顾了决定透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)空间分辨率的实际因素,然后列举了用点扩散函数表示分辨率的优点。给出了主要分辨率限制因素的点扩散函数:孔径衍射、球差和色差、束发散、束展宽、库仑离域、辐射分解损伤以及基体中吸附原子或原子产生的二次电子。我们注意到束展宽的各种定义、在非常薄的样品中描述这种效应的复杂性,以及在厚样品的明场STEM中优化分辨率的方法。通过模拟比较了非晶态和晶体材料中的束扩展。对于对束敏感的样品,我们强调剂量限制分辨率(DLR)的重要性,并简要认识到为克服由电子的波动和粒子特性所设定的基本分辨率限制所做的努力。