Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Biostatistics, University of California Berkeley, Berkeley, USA.
Int J Biostat. 2022 Jun 16;19(1):217-238. doi: 10.1515/ijb-2020-0127. eCollection 2023 May 1.
The optimal dynamic treatment rule (ODTR) framework offers an approach for understanding which kinds of patients respond best to specific treatments - in other words, treatment effect heterogeneity. Recently, there has been a proliferation of methods for estimating the ODTR. One such method is an extension of the SuperLearner algorithm - an ensemble method to optimally combine candidate algorithms extensively used in prediction problems - to ODTRs. Following the causal roadmap," we causally and statistically define the ODTR and provide an introduction to estimating it using the ODTR SuperLearner. Additionally, we highlight practical choices when implementing the algorithm, including choice of candidate algorithms, metalearners to combine the candidates, and risk functions to select the best combination of algorithms. Using simulations, we illustrate how estimating the ODTR using this SuperLearner approach can uncover treatment effect heterogeneity more effectively than traditional approaches based on fitting a parametric regression of the outcome on the treatment, covariates and treatment-covariate interactions. We investigate the implications of choices in implementing an ODTR SuperLearner at various sample sizes. Our results show the advantages of: (1) including a combination of both flexible machine learning algorithms and simple parametric estimators in the library of candidate algorithms; (2) using an ensemble metalearner to combine candidates rather than selecting only the best-performing candidate; (3) using the mean outcome under the rule as a risk function. Finally, we apply the ODTR SuperLearner to the Interventions" study, an ongoing randomized controlled trial, to identify which justice-involved adults with mental illness benefit most from cognitive behavioral therapy to reduce criminal re-offending.
最优动态治疗规则 (ODTR) 框架提供了一种方法来了解哪些类型的患者对特定治疗反应最好 - 换句话说,治疗效果异质性。最近,已经出现了许多估计 ODTR 的方法。其中一种方法是 SuperLearner 算法的扩展 - 一种广泛用于预测问题的最优组合候选算法的集成方法 - 到 ODTR。按照“因果路线图”,我们从因果关系和统计学上定义了 ODTR,并提供了使用 ODTR SuperLearner 估计它的介绍。此外,我们还强调了在实施算法时的实际选择,包括候选算法的选择、组合候选算法的元学习者以及选择最佳算法组合的风险函数。通过模拟,我们说明了使用这种 SuperLearner 方法估计 ODTR 如何比基于拟合结果对治疗、协变量和治疗-协变量交互作用的参数回归的传统方法更有效地发现治疗效果异质性。我们研究了在各种样本大小下实施 ODTR SuperLearner 时的选择的影响。我们的结果表明以下方法的优势:(1) 在候选算法库中同时包含灵活的机器学习算法和简单的参数估计器;(2) 使用集成元学习者来组合候选算法,而不是仅选择表现最好的候选算法;(3) 使用规则下的平均结果作为风险函数。最后,我们将 ODTR SuperLearner 应用于“干预”研究,这是一项正在进行的随机对照试验,以确定哪些有精神疾病的涉刑成年人最受益于认知行为疗法以减少再次犯罪。