Suppr超能文献

最优动态治疗规则超级学习者:考虑因素、性能及在刑事司法干预中的应用。

The optimal dynamic treatment rule superlearner: considerations, performance, and application to criminal justice interventions.

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Division of Biostatistics, University of California Berkeley, Berkeley, USA.

出版信息

Int J Biostat. 2022 Jun 16;19(1):217-238. doi: 10.1515/ijb-2020-0127. eCollection 2023 May 1.

Abstract

The optimal dynamic treatment rule (ODTR) framework offers an approach for understanding which kinds of patients respond best to specific treatments - in other words, treatment effect heterogeneity. Recently, there has been a proliferation of methods for estimating the ODTR. One such method is an extension of the SuperLearner algorithm - an ensemble method to optimally combine candidate algorithms extensively used in prediction problems - to ODTRs. Following the causal roadmap," we causally and statistically define the ODTR and provide an introduction to estimating it using the ODTR SuperLearner. Additionally, we highlight practical choices when implementing the algorithm, including choice of candidate algorithms, metalearners to combine the candidates, and risk functions to select the best combination of algorithms. Using simulations, we illustrate how estimating the ODTR using this SuperLearner approach can uncover treatment effect heterogeneity more effectively than traditional approaches based on fitting a parametric regression of the outcome on the treatment, covariates and treatment-covariate interactions. We investigate the implications of choices in implementing an ODTR SuperLearner at various sample sizes. Our results show the advantages of: (1) including a combination of both flexible machine learning algorithms and simple parametric estimators in the library of candidate algorithms; (2) using an ensemble metalearner to combine candidates rather than selecting only the best-performing candidate; (3) using the mean outcome under the rule as a risk function. Finally, we apply the ODTR SuperLearner to the Interventions" study, an ongoing randomized controlled trial, to identify which justice-involved adults with mental illness benefit most from cognitive behavioral therapy to reduce criminal re-offending.

摘要

最优动态治疗规则 (ODTR) 框架提供了一种方法来了解哪些类型的患者对特定治疗反应最好 - 换句话说,治疗效果异质性。最近,已经出现了许多估计 ODTR 的方法。其中一种方法是 SuperLearner 算法的扩展 - 一种广泛用于预测问题的最优组合候选算法的集成方法 - 到 ODTR。按照“因果路线图”,我们从因果关系和统计学上定义了 ODTR,并提供了使用 ODTR SuperLearner 估计它的介绍。此外,我们还强调了在实施算法时的实际选择,包括候选算法的选择、组合候选算法的元学习者以及选择最佳算法组合的风险函数。通过模拟,我们说明了使用这种 SuperLearner 方法估计 ODTR 如何比基于拟合结果对治疗、协变量和治疗-协变量交互作用的参数回归的传统方法更有效地发现治疗效果异质性。我们研究了在各种样本大小下实施 ODTR SuperLearner 时的选择的影响。我们的结果表明以下方法的优势:(1) 在候选算法库中同时包含灵活的机器学习算法和简单的参数估计器;(2) 使用集成元学习者来组合候选算法,而不是仅选择表现最好的候选算法;(3) 使用规则下的平均结果作为风险函数。最后,我们将 ODTR SuperLearner 应用于“干预”研究,这是一项正在进行的随机对照试验,以确定哪些有精神疾病的涉刑成年人最受益于认知行为疗法以减少再次犯罪。

相似文献

1
The optimal dynamic treatment rule superlearner: considerations, performance, and application to criminal justice interventions.
Int J Biostat. 2022 Jun 16;19(1):217-238. doi: 10.1515/ijb-2020-0127. eCollection 2023 May 1.
2
Estimators for the value of the optimal dynamic treatment rule with application to criminal justice interventions.
Int J Biostat. 2022 Jun 6;19(1):239-259. doi: 10.1515/ijb-2020-0128. eCollection 2023 May 1.
4
Learning optimal dynamic treatment regimes from longitudinal data.
Am J Epidemiol. 2024 Dec 2;193(12):1768-1775. doi: 10.1093/aje/kwae122.
6
Variable importance and prediction methods for longitudinal problems with missing variables.
PLoS One. 2015 Mar 27;10(3):e0120031. doi: 10.1371/journal.pone.0120031. eCollection 2015.
7
8
Impact of summer programmes on the outcomes of disadvantaged or 'at risk' young people: A systematic review.
Campbell Syst Rev. 2024 Jun 13;20(2):e1406. doi: 10.1002/cl2.1406. eCollection 2024 Jun.
9
Causal rule ensemble method for estimating heterogeneous treatment effect with consideration of prognostic effects.
Stat Methods Med Res. 2024 Jun;33(6):1021-1042. doi: 10.1177/09622802241247728. Epub 2024 Apr 27.
10
Benchmarking clinical risk prediction algorithms with ensemble machine learning for the noninvasive diagnosis of liver fibrosis in NAFLD.
Hepatology. 2024 Nov 1;80(5):1184-1195. doi: 10.1097/HEP.0000000000000908. Epub 2024 Apr 30.

引用本文的文献

1
Machine learning for estimating and comparing clinical rules for treating diarrheal illness with antibiotics.
medRxiv. 2025 Jan 12:2025.01.10.25320357. doi: 10.1101/2025.01.10.25320357.
2
Learning optimal dynamic treatment regimes from longitudinal data.
Am J Epidemiol. 2024 Dec 2;193(12):1768-1775. doi: 10.1093/aje/kwae122.
4
Estimators for the value of the optimal dynamic treatment rule with application to criminal justice interventions.
Int J Biostat. 2022 Jun 6;19(1):239-259. doi: 10.1515/ijb-2020-0128. eCollection 2023 May 1.

本文引用的文献

1
Estimators for the value of the optimal dynamic treatment rule with application to criminal justice interventions.
Int J Biostat. 2022 Jun 6;19(1):239-259. doi: 10.1515/ijb-2020-0128. eCollection 2023 May 1.
3
Precision Medicine.
Annu Rev Stat Appl. 2019 Mar;6:263-286. doi: 10.1146/annurev-statistics-030718-105251.
4
STATISTICAL INFERENCE FOR THE MEAN OUTCOME UNDER A POSSIBLY NON-UNIQUE OPTIMAL TREATMENT STRATEGY.
Ann Stat. 2016 Apr;44(2):713-742. doi: 10.1214/15-AOS1384. Epub 2016 Mar 17.
6
Treatment Selection in Depression.
Annu Rev Clin Psychol. 2018 May 7;14:209-236. doi: 10.1146/annurev-clinpsy-050817-084746. Epub 2018 Mar 1.
7
Residual Weighted Learning for Estimating Individualized Treatment Rules.
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
9
Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials.
Stat Med. 2017 Jan 15;36(1):136-196. doi: 10.1002/sim.7064. Epub 2016 Aug 3.
10
Super-Learning of an Optimal Dynamic Treatment Rule.
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验