Suppr超能文献

基于BP神经网络的绿色供应链优化

Green Supply Chain Optimization Based on BP Neural Network.

作者信息

Wang Huan

机构信息

College of Economics and Management, Hubei University of Automotive Technology, Shiyan, China.

出版信息

Front Neurorobot. 2022 May 30;16:865693. doi: 10.3389/fnbot.2022.865693. eCollection 2022.

Abstract

With the emergence and development of the Back Propagation neural network (BPNN), its unique learning, generalization, and non-linear characteristics have been gradually excavated and fully applied in the field of prediction. To improve the economic and green benefits of enterprises, the BPNN algorithm is applied to the green supply chain assisted by intelligent logistics robots. The BPNN algorithm can be used to output the characteristics of different information and optimize the green supply chain according to the input parameters and the influencing factors in the network. Firstly, an evaluation index system is established for selecting suppliers, which includes 4 first-level indicators: operational indicators, economic indicators, green indicators, social indicators, and 14 corresponding secondary indicators. Secondly, the evaluation indicator system is modeled through the BPNN. Finally, using the BPNN model, a supply chain enterprise's selection of cooperative enterprises in Xi'an is taken as the research object and simulation. Finally, the output results of the five alternative enterprises are 0.77, 0.75, 0.68, 0.72, and 0.65, respectively. The enterprise with the highest output results is selected as the cooperative enterprise and the enterprise with the second highest output results as an alternate. The green supply chain model based on the proposed BPNN is scientific and effective through specific simulation experiments. It has certain reference significance for the relevant issues related to subsequent optimization of the green supply chain.

摘要

随着反向传播神经网络(BPNN)的出现和发展,其独特的学习、泛化和非线性特性逐渐被挖掘出来,并在预测领域得到了充分应用。为提高企业的经济和绿色效益,将BPNN算法应用于由智能物流机器人辅助的绿色供应链中。BPNN算法可用于输出不同信息的特征,并根据网络中的输入参数和影响因素对绿色供应链进行优化。首先,建立供应商选择评价指标体系,包括运营指标、经济指标、绿色指标、社会指标4个一级指标以及14个相应的二级指标。其次,通过BPNN对评价指标体系进行建模。最后,以西安某供应链企业对合作企业的选择为研究对象,利用BPNN模型进行仿真。最终,5家备选企业的输出结果分别为0.77、0.75、0.68、0.72和0.65。将输出结果最高的企业选为合作企业,输出结果次高的企业作为备选企业。通过具体的仿真实验验证了基于所提BPNN的绿色供应链模型具有科学性和有效性。对后续绿色供应链优化的相关问题具有一定的参考意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/265c/9195618/5dfde81e5322/fnbot-16-865693-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验