Suppr超能文献

用于远程自修复的可调谐磁性纳米复合材料。

Tuneable magnetic nanocomposites for remote self-healing.

作者信息

Gupta Ranjeetkumar, Gupta Priya, Footer Charles, Stenning Gavin B G, Darr Jawwad A, Pancholi Ketan

机构信息

Advanced Materials Group, School of Engineering, Robert Gordon University, Aberdeen, AB10 7GE, UK.

Lakshmi Narain College of Technology and Sciences, RGPV, Indore, MP, India.

出版信息

Sci Rep. 2022 Jun 17;12(1):10180. doi: 10.1038/s41598-022-14135-8.

Abstract

When polymer composites containing magnetic nanoparticles (MNPs) are exposed to an alternating magnetic field, heat is generated to melt the surrounding polymer locally, partially filling voids across any cracks or deformities. Such materials are of interest for structural applications; however, structural polymers with high melting temperatures pose the challenge of generating high localised temperatures enabling self-healing. A method to prepare a multiferroic-Polyamide 6 (PA6) nanocomposite with tuneable magnetocaloric properties is reported. Tunability arises from varying the MNP material (and any coating, its dispersion, and agglomerate sizes in the nanocomposite). The superparamagnetic MNPs (SMNPs) and iron oxide MNPs with and without surface functionalization were dispersed into PA6 through in situ polymerization, and their magnetic properties were compared. Furthermore, computer simulations were used to quantify the dispersion state of MNPs and assess the influence of the interaction radius on the magnetic response of the self-healable magnetic nanoparticle polymer (SHMNP) composite. It was shown that maintaining the low interaction radius through the dispersion of the low coercivity MNPs could allow tuning of the bulk magnetocaloric properties of the resulting mesostructures. An in-situ polymerization method improved the dispersion and reduced the maximum interaction radius value from ca. 806 to 371 nm and increased the magnetic response for the silica-coated SMNP composite. This sample displayed ca. three orders of magnitude enhancement for magnetic saturation compared to the unfunctionalized FeO MNP composite.

摘要

当含有磁性纳米粒子(MNPs)的聚合物复合材料暴露于交变磁场时,会产生热量使周围的聚合物局部熔化,部分填充任何裂缝或变形处的空隙。这类材料在结构应用方面具有吸引力;然而,高熔点的结构聚合物带来了产生高局部温度以实现自修复的挑战。本文报道了一种制备具有可调磁热性能的多铁性聚酰胺6(PA6)纳米复合材料的方法。可调性源于改变MNP材料(以及任何涂层、其在纳米复合材料中的分散情况和团聚体尺寸)。通过原位聚合将具有和不具有表面功能化的超顺磁性MNPs(SMNPs)和氧化铁MNPs分散到PA6中,并比较了它们的磁性。此外,利用计算机模拟来量化MNPs的分散状态,并评估相互作用半径对可自修复磁性纳米粒子聚合物(SHMNP)复合材料磁响应的影响。结果表明,通过低矫顽力MNPs的分散来维持低相互作用半径,可以调节所得介观结构的整体磁热性能。原位聚合法改善了分散性,使最大相互作用半径值从约806纳米降至371纳米,并提高了二氧化硅包覆的SMNP复合材料的磁响应。与未功能化的FeO MNP复合材料相比,该样品的磁饱和增强了约三个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9b0/9205898/1cdf8d633545/41598_2022_14135_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验