Industrial / Organizational and Social Psychology, Institute of Psychology, TU Braunschweig, Braunschweig, Germany.
Institute of Project Management and Innovation, University of Bremen, Bremen, Germany.
Work. 2022;72(4):1689-1708. doi: 10.3233/WOR-211262.
Semantic analyses of patents have been used for years to unlock technical knowledge. Nevertheless, information retrievable from patents remains widely unconsidered when making strategic decisions, when recruiting candidates or deciding which qualifications to offer to employees in technological fields.
This paper provides an approach to evaluate whether competencies and competence demands in technological fields can be derived from patents and if this process can be automated to a certain extent.
A sample of significant patents is analyzed with regard to comprised competence data via semantic structures like n-gram and Subject--Action-Object (SAO) analysis. The retrieved data is cleansed and matched semantically to inventor competencies from social career networks and checked for similarities.
A social career network profile analysis of significant inventors revealed a total of 570 competencies that were matched with the results of the n-gram and SAO analysis. Overall, 15%of the extracted social career network competence data were covered through extracted n-grams (87 out of 570 terms), while the SAO analysis showed a match rate of 18.8%, covering 107 terms.
The outlined approach suggests a partly automatable process of promising character to identify technological competence demands in patents.
多年来,人们一直利用专利的语义分析来挖掘技术知识。然而,在做出战略决策、招聘人才或决定向技术领域的员工提供哪些资格时,专利中可获取的信息仍然没有得到广泛考虑。
本文提供了一种方法来评估是否可以从专利中推导出技术领域的能力和能力需求,以及该过程是否可以在一定程度上实现自动化。
通过 n-gram 和 Subject-Action-Object (SAO) 分析等语义结构,对具有代表性的专利样本进行了包含能力数据的分析。检索到的数据经过清理并与社会职业网络中的发明人能力进行语义匹配,并检查相似性。
对重要发明人的社会职业网络档案分析显示,共有 570 项能力与 n-gram 和 SAO 分析的结果相匹配。总的来说,通过提取 n-gram(570 个术语中的 87 个)涵盖了提取的社会职业网络能力数据的 15%,而 SAO 分析的匹配率为 18.8%,涵盖了 107 个术语。
所提出的方法表明,在识别专利中的技术能力需求方面,这是一种具有一定潜力的自动化过程。