Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
Department of Physics, College of Arts & Sciences, Boston University, Boston, MA, USA.
Nat Commun. 2022 Jun 20;13(1):3404. doi: 10.1038/s41467-022-31037-5.
Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer's disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis.
全球每年新增近 1000 万例痴呆症患者,其中阿尔茨海默病(AD)最为常见。需要采取新措施来改善对各种病因导致认知障碍个体的诊断。在这里,我们报告了一个深度学习框架,该框架以连续的方式完成多个诊断步骤,以识别认知正常(NC)、轻度认知障碍(MCI)、AD 和非 AD 痴呆症(nADD)患者。我们展示了一系列能够接受常规收集的临床信息灵活组合的模型,包括人口统计学、病史、神经心理学测试、神经影像学和功能评估。然后,我们表明这些框架的诊断准确性可与执业神经科医生和神经放射科医生相媲美。最后,我们应用计算机视觉中的可解释性方法表明,我们的模型检测到的疾病特异性模式与大脑中退行性变化的独特模式相吻合,并与尸检时存在的神经病理学病变密切相关。我们的工作展示了使用既定医学诊断标准验证计算预测的方法。