Suppr超能文献

TCF-1 促进 T 细胞祖细胞中拓扑关联域之间的染色质相互作用。

TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors.

机构信息

Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

Nat Immunol. 2022 Jul;23(7):1052-1062. doi: 10.1038/s41590-022-01232-z. Epub 2022 Jun 20.

Abstract

The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.

摘要

高迁移率族蛋白(HMG)转录因子 TCF-1 是早期 T 细胞发育所必需的。尽管体外生化分析表明 HMG 蛋白可以作为组装更高阶核组织的结构元件,但 TCF-1 在控制 T 细胞发育过程中三维(3D)基因组结构方面的作用尚不清楚。在这里,我们研究了 TCF-1 在 3D 基因组重排中的作用。通过增益和功能丧失实验,我们发现 TCF-1 和结构蛋白 CTCF 的共占据改变了 T 细胞祖细胞中拓扑关联域的结构,导致以前隔离的调控元件与 T 细胞发育后期靶基因之间的相互作用。TCF-1 依赖性长距离相互作用的增加与活性增强子标记 H3K27ac 的沉积和活性增强子处着丝粒蛋白装载因子 NIPBL 的募集有关。这些数据表明,TCF-1 在控制 T 细胞发育过程中的全基因组组织方面具有重要作用。

相似文献

1
TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors.
Nat Immunol. 2022 Jul;23(7):1052-1062. doi: 10.1038/s41590-022-01232-z. Epub 2022 Jun 20.
3
Cohesin is required for long-range enhancer action at the Shh locus.
Nat Struct Mol Biol. 2022 Sep;29(9):891-897. doi: 10.1038/s41594-022-00821-8. Epub 2022 Sep 12.
4
Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
Epigenetics. 2019 Sep;14(9):894-911. doi: 10.1080/15592294.2019.1621140. Epub 2019 Jun 10.
5
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7.
6
Chromatin insulator mechanisms ensure accurate gene expression by controlling overall 3D genome organization.
Curr Opin Genet Dev. 2024 Aug;87:102208. doi: 10.1016/j.gde.2024.102208. Epub 2024 May 28.
7
A tour of 3D genome with a focus on CTCF.
Semin Cell Dev Biol. 2019 Jun;90:4-11. doi: 10.1016/j.semcdb.2018.07.020. Epub 2018 Jul 23.
9
Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
Cell Rep. 2019 Jun 18;27(12):3500-3510.e4. doi: 10.1016/j.celrep.2019.05.078.
10
Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization.
Nat Struct Mol Biol. 2018 Jun;25(6):496-504. doi: 10.1038/s41594-018-0070-4. Epub 2018 Jun 4.

引用本文的文献

1
3D Genome Engineering: Current Advances and Therapeutic Opportunities in Human Diseases.
Research (Wash D C). 2025 Sep 1;8:0865. doi: 10.34133/research.0865. eCollection 2025.
3
Inference of multi-enhancer interactions in T lymphocytes using Hi-Cociety.
bioRxiv. 2025 Jun 17:2025.06.12.659372. doi: 10.1101/2025.06.12.659372.
5
Examining the dynamics of three-dimensional genome organization with multitask matrix factorization.
Genome Res. 2025 May 2;35(5):1179-1193. doi: 10.1101/gr.279930.124.
6
The epigenetic landscape of fate decisions in T cells.
Nat Immunol. 2025 Apr;26(4):544-556. doi: 10.1038/s41590-025-02113-x. Epub 2025 Mar 19.
7
Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation.
Front Cell Dev Biol. 2025 Feb 13;13:1514627. doi: 10.3389/fcell.2025.1514627. eCollection 2025.
8
Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor.
bioRxiv. 2025 Jan 12:2025.01.09.632202. doi: 10.1101/2025.01.09.632202.
9
LDB1 establishes multi-enhancer networks to regulate gene expression.
Mol Cell. 2025 Jan 16;85(2):376-393.e9. doi: 10.1016/j.molcel.2024.11.037. Epub 2024 Dec 24.

本文引用的文献

1
EBF1 nuclear repositioning instructs chromatin refolding to promote therapy resistance in T leukemic cells.
Mol Cell. 2022 Mar 3;82(5):1003-1020.e15. doi: 10.1016/j.molcel.2022.01.015. Epub 2022 Feb 18.
2
Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL.
Blood. 2022 Apr 21;139(16):2483-2498. doi: 10.1182/blood.2021012077.
4
In vivo CD8 T cell CRISPR screening reveals control by Fli1 in infection and cancer.
Cell. 2021 Mar 4;184(5):1262-1280.e22. doi: 10.1016/j.cell.2021.02.019. Epub 2021 Feb 25.
6
A TAD Skeptic: Is 3D Genome Topology Conserved?
Trends Genet. 2021 Mar;37(3):216-223. doi: 10.1016/j.tig.2020.10.009. Epub 2020 Nov 14.
7
CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.
Nucleus. 2020 Dec;11(1):132-148. doi: 10.1080/19491034.2020.1782024.
8
Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression.
Nat Neurosci. 2020 Jun;23(6):707-717. doi: 10.1038/s41593-020-0634-6. Epub 2020 May 25.
9
Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia.
Nat Genet. 2020 Apr;52(4):388-400. doi: 10.1038/s41588-020-0602-9. Epub 2020 Mar 23.
10
Genetic Variation in Type 1 Diabetes Reconfigures the 3D Chromatin Organization of T Cells and Alters Gene Expression.
Immunity. 2020 Feb 18;52(2):257-274.e11. doi: 10.1016/j.immuni.2020.01.003. Epub 2020 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验