Suppr超能文献

从数值模型到粒度模型:对误差与性能分析的探索

From Numeric to Granular Models: A Quest for Error and Performance Analysis.

作者信息

Zhu Xiubin, Pedrycz Witold, Qu Ting, Li Zhiwu

出版信息

IEEE Trans Cybern. 2024 Jan;54(1):150-161. doi: 10.1109/TCYB.2022.3175479. Epub 2023 Dec 20.

Abstract

In this study, we establish a new design methodology of granular models realized by augmenting the existing numeric models through analyzing and modeling their associated prediction error. Several novel approaches to the construction of granular architectures through augmenting existing numeric models by incorporating modeling errors are proposed in order to improve and quantify the numeric models' prediction abilities. The resulting construct arises as a granular model that produces granular outcomes generated as a result of the aggregation of the outputs produced by the numeric model (or its granular counterpart) and the corresponding error terms. Three different architectural developments are formulated and analyzed. In comparison with the numeric models, which strive to achieve the highest accuracy, granular models are developed in a way such that they produce comprehensive prediction outcomes realized as information granules. In virtue of the granular nature of results, the coverage and specificity of the constructed information granules express the quality of the results of prediction in a more descriptive and comprehensive manner. The performance of the granular constructs is evaluated using the criteria of coverage and specificity, which are pertinent to granular outputs produced by the granular models.

摘要

在本研究中,我们通过分析和建模现有数值模型的相关预测误差,建立了一种通过扩充现有数值模型来实现粒状模型的新设计方法。为了改进和量化数值模型的预测能力,提出了几种通过纳入建模误差来扩充现有数值模型以构建粒状架构的新颖方法。由此产生的结构是一个粒状模型,它产生的粒状结果是由数值模型(或其粒状对应物)产生的输出与相应误差项聚合而成的。制定并分析了三种不同的架构发展。与力求达到最高精度的数值模型相比,粒状模型的开发方式是使其产生作为信息粒实现的综合预测结果。由于结果的粒状性质,所构建信息粒的覆盖范围和特异性以更具描述性和综合性的方式表达了预测结果的质量。使用与粒状模型产生的粒状输出相关的覆盖范围和特异性标准来评估粒状结构的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验