Suppr超能文献

机器学习在高血压预测中的应用:系统评价。

Machine Learning for Hypertension Prediction: a Systematic Review.

机构信息

Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.

Laboratory of Big Data and Predictive Analysis in Healthcare, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.

出版信息

Curr Hypertens Rep. 2022 Nov;24(11):523-533. doi: 10.1007/s11906-022-01212-6. Epub 2022 Jun 22.

Abstract

PURPOSE OF REVIEW

To provide an overview of the literature regarding the use of machine learning algorithms to predict hypertension. A systematic review was performed to select recent articles on the subject.

RECENT FINDINGS

The screening of the articles was conducted using a machine learning algorithm (ASReview). A total of 21 articles published between January 2018 and May 2021 were identified and compared according to variable selection, train-test split, data balancing, outcome definition, final algorithm, and performance metrics. Overall, the articles achieved an area under the ROC curve (AUROC) between 0.766 and 1.00. The algorithms most frequently identified as having the best performance were support vector machines (SVM), extreme gradient boosting (XGBoost), and random forest. Machine learning algorithms are a promising tool to improve preventive clinical decisions and targeted public health policies for hypertension. However, technical factors such as outcome definition, availability of the final code, predictive performance, explainability, and data leakage need to be consistently and critically evaluated.

摘要

目的综述

提供使用机器学习算法预测高血压的文献综述。采用系统评价的方法对该主题的最新文献进行筛选。

最近的发现

使用机器学习算法(ASReview)对文章进行筛选。共确定了 21 篇 2018 年 1 月至 2021 年 5 月发表的文章,并根据变量选择、训练-测试分割、数据平衡、结果定义、最终算法和性能指标进行比较。总的来说,文章的受试者工作特征曲线下面积(AUROC)在 0.766 到 1.00 之间。被认为性能最好的算法最常被识别为支持向量机(SVM)、极端梯度提升(XGBoost)和随机森林。机器学习算法是改善高血压预防临床决策和有针对性的公共卫生政策的有前途的工具。然而,技术因素,如结果定义、最终代码的可用性、预测性能、可解释性和数据泄露,需要持续和批判性地评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验