Suppr超能文献

短期训练通过算法辅助方法显著提高神经节细胞检测能力。

Short Training Significantly Improves Ganglion Cell Detection Using an Algorithm-Assisted Approach.

作者信息

Greenberg Ariel, Samueli Benzion, Fahoum Ibrahim, Farkash Shai, Greenberg Orli, Zemser-Werner Valentina, Sabo Edmond, Hagege Rami R, Hershkovitz Dov

机构信息

From Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (A Greenberg, Fahoum, O Greenberg, Zemser-Werner, Hagege, Hershkovitz).

From the Department of Pathology, Soroka University Medical Center, Be'er Sheva, Israel (Samueli).

出版信息

Arch Pathol Lab Med. 2023 Feb 1;147(2):215-221. doi: 10.5858/arpa.2021-0481-OA.

Abstract

CONTEXT.—: Medical education in pathology relies on the accumulation of experience gained through inspection of numerous samples from each entity. Acquiring sufficient teaching material for rare diseases, such as Hirschsprung disease (HSCR), may be difficult, especially in smaller institutes. The current study makes use of a previously developed decision support system using a decision support algorithm meant to aid pathologists in the diagnosis of HSCR.

OBJECTIVE.—: To assess the effect of a short training session on algorithm-assisted HSCR diagnosis.

DESIGN.—: Five pathologists reviewed a data set of 568 image sets (1704 images in total) selected from 50 cases by the decision support algorithm and were tasked with scoring the images for the presence or absence of ganglion cells. The task was repeated a total of 3 times. Each pathologist had to complete a short educational presentation between the second and third iterations.

RESULTS.—: The training resulted in a significantly increased rate of correct diagnoses (true positive/negative) and a decreased need for referrals for expert consultation. No statistically significant changes in the rate of false positives/negatives were detected.

CONCLUSIONS.—: A very short (<10 minutes) training session can greatly improve the pathologist's performance in the algorithm-assisted diagnosis of HSCR. The same approach may be feasible in training for the diagnosis of other rare diseases.

摘要

背景

病理学医学教育依赖于通过检查来自每个实体的大量样本所积累的经验。获取诸如先天性巨结肠(HSCR)等罕见疾病的足够教学材料可能很困难,尤其是在较小的机构中。当前的研究利用了先前开发的决策支持系统,该系统使用一种决策支持算法来帮助病理学家诊断HSCR。

目的

评估短期培训课程对算法辅助HSCR诊断的效果。

设计

五位病理学家审查了由决策支持算法从50个病例中选择的568个图像集(总共1704张图像)的数据集,并负责对图像中有无神经节细胞进行评分。该任务总共重复了3次。每位病理学家必须在第二次和第三次迭代之间完成一个简短的教育演示。

结果

培训导致正确诊断率(真阳性/阴性)显著提高,减少了转诊至专家咨询的需求。未检测到假阳性/阴性率有统计学显著变化。

结论

非常短(<10分钟)的培训课程可以极大地提高病理学家在算法辅助HSCR诊断中的表现。相同的方法在其他罕见疾病诊断培训中可能也是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验