Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA.
Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
Exp Neurol. 2022 Sep;355:114147. doi: 10.1016/j.expneurol.2022.114147. Epub 2022 Jun 20.
Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
在中枢神经系统损伤后,一群星形胶质细胞占据病变部位,形成胶质桥并促进轴突再生。这些星形胶质细胞主要来源于固有星形胶质细胞或 NG2+少突胶质前体细胞。然而,这些细胞类型在多大程度上产生病变填充星形胶质细胞,以及来自不同细胞类型的星形胶质细胞是否同样有助于视神经再生,目前尚不清楚。在这里,我们检查了视神经挤压模型中星形胶质细胞和 NG2+细胞的分布。我们表明,视神经星形胶质细胞在挤压损伤后会随着时间的推移部分填充损伤部位。病毒介导的睫状神经营养因子 (CNTF) 在视网膜神经节细胞 (RGCs) 中的表达促进了轴突再生,而不改变损伤大小或损伤填充 GFAP+细胞的程度。引人注目的是,使用诱导型 NG2CreER 驱动小鼠,我们发现 CNTF 在 RGCs 中的过表达增加了 NG2+细胞源性星形胶质细胞在视神经病变中的占有率。一个 EdU 脉冲追踪实验表明,NG2 细胞源性星形胶质细胞的增加不是由于细胞增殖增加所致。最后,我们对损伤的视神经进行了 RNA 测序,结果表明 CNTF 在 RGCs 中的过表达导致了明显的基因表达变化,包括编码趋化因子、生长因子受体和免疫细胞调节剂的基因。尽管 CNTF 诱导的轴突再生早已被认识到,但这是首次证明该程序会影响视神经挤压部位的神经胶质细胞命运。我们讨论了这些结果对轴突再生的可能影响。