Suppr超能文献

关于国际学生评估项目(PISA)数据量表编制中项目反应模型的选择:基于信息准则的模型选择与模型不确定性量化

On the Choice of the Item Response Model for Scaling PISA Data: Model Selection Based on Information Criteria and Quantifying Model Uncertainty.

作者信息

Robitzsch Alexander

机构信息

IPN-Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany.

Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany.

出版信息

Entropy (Basel). 2022 May 27;24(6):760. doi: 10.3390/e24060760.

Abstract

In educational large-scale assessment studies such as PISA, item response theory (IRT) models are used to summarize students' performance on cognitive test items across countries. In this article, the impact of the choice of the IRT model on the distribution parameters of countries (i.e., mean, standard deviation, percentiles) is investigated. Eleven different IRT models are compared using information criteria. Moreover, model uncertainty is quantified by estimating model error, which can be compared with the sampling error associated with the sampling of students. The PISA 2009 dataset for the cognitive domains mathematics, reading, and science is used as an example of the choice of the IRT model. It turned out that the three-parameter logistic IRT model with residual heterogeneity and a three-parameter IRT model with a quadratic effect of the ability θ provided the best model fit. Furthermore, model uncertainty was relatively small compared to sampling error regarding country means in most cases but was substantial for country standard deviations and percentiles. Consequently, it can be argued that model error should be included in the statistical inference of educational large-scale assessment studies.

摘要

在诸如国际学生评估项目(PISA)这样的教育大规模评估研究中,项目反应理论(IRT)模型被用于总结各国学生在认知测试项目上的表现。在本文中,研究了IRT模型的选择对各国分布参数(即均值、标准差、百分位数)的影响。使用信息准则比较了11种不同的IRT模型。此外,通过估计模型误差来量化模型不确定性,模型误差可与学生抽样相关的抽样误差进行比较。以PISA 2009数学、阅读和科学认知领域的数据集为例来说明IRT模型的选择。结果表明,具有残差异质性的三参数逻辑IRT模型和能力θ具有二次效应的三参数IRT模型提供了最佳的模型拟合。此外,在大多数情况下,与各国均值的抽样误差相比,模型不确定性相对较小,但对于各国标准差和百分位数而言,模型不确定性很大。因此,可以认为在教育大规模评估研究的统计推断中应纳入模型误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e94/9223051/dd68cea94386/entropy-24-00760-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验